The effects of food processing on the solubility and functionality of dietary fibre: Arabinoxylans and β-glucans

阿拉伯木聚糖 胚乳 膳食纤维 食品科学 抗性淀粉 多糖 淀粉 麸皮 膳食纤维 化学 消化(炼金术) 生物化学 色谱法 有机化学 原材料
作者
Penelope Comino
标识
DOI:10.14264/uql.2014.280
摘要

Cereal grains are very important for human nutrition as they are usually the largest single component of the diet in energy terms, and mainly consist of starch, protein and non-starch polysaccharides (NSP), namely arabinoxylan (AX) and b-glucans. NSPrs are a major component of dietary fibre and are found in cereal endosperm cell walls, as well as the aleurone layer, the bran and the husk. The major nutritional properties of dietary fibre are linked to the extent of solubilisation (in reality including insoluble but swollen states). From a nutritional functionality viewpoint the soluble and insoluble forms of dietary fibre offer varying nutritional health advantages e.g.; promotion of beneficial microflora, the prevention of re-absorption of bile acids leading to lower blood cholesterol, and retardation of starch digestion leading to controlled glycemia. The risk of serious diseases like colorectal cancer, cardiovascular disease, and diabetes can be reduced through the long term consumption of a healthy diet incorporating adequate dietary fibre. However, whilst these advantages of dietary fibre consumption are well established from a nutritional viewpoint, what is not known are the solubility and functional effects of cereal processing operations on AX and b-glucan. After all, cereal dietary fibre, particularly from the endosperm, is mainly consumed in a processed form. This thesis therefore reports a study of the effects of model food processes on three common food grains (wheat, rye, and hull-less barley), in order to establish structure-processing-nutrition relationships. The food processing conditions studied were fermentation 35˚C (dough), baking 200˚C (breads), extrusion pressures 6-18bar, and temperatures between 30˚C -130˚C (breakfast cereals) and lchemicalr/boiling 100˚C cooking conditions using yellow alkaline noodles (YAN). By examining and understanding the effects of various food processing conditions on the functionality and characteristics of dietary fibre, we will be able to gain a better understanding of how these food processes change the quantity, redistribution and composition of soluble and insoluble dietary fibre, and how and to what degree this affects the nutritional quality of finished foods. However, in order to fully characterise the unprocessed and processed soluble (AX and b-glucan) and insoluble forms (cell wall) of dietary fibre, these fractions needed to be extracted, separated and purified whilst also maintaining their inherent nutritional properties. The extraction fractionation method that was developed to achieve this is detailed in the first experimental chapter 3 lSeparation and Purification of Soluble Polymers and Cell Wall Fractions from Wheat, Rye and Hull-less Barley Endosperm Flours for Structure-Nutrition Studiesr. The structural and microscopic characteristics of dietary fibre fractions obtained by this method, including soluble and insoluble AX and b-glucan fine structures are detailed in the second experimental chapter 4lCharacterisation of soluble and Insoluble Cell Wall Fractions from Rye, Wheat and hull-less Barley Endosperm Floursr. In addition to the effects of food processing described in the fifth chapter, lThe Effects of Food Processing Conditions on the Nutritional Functionality and Solubility of Wheat, Barley and Rye Endosperm Dietary Fibrer, the in vitro fermentation, short chain fatty acid (SCFA) end products, and gas kinetic properties of dietary fibre fractions before and after food processing are reported in chapter 6 lIn Vitro Gas Kinetics of Soluble and Insoluble Processed and Unprocessed Dietary Fibrer. Overall, the processed AX and b-glucan results show that the amounts of dietary fibre were not significantly affected. No major losses of b-glucan and arabinoxylans were found across the various forms of processed foods, except for the b-glucan found in the hull-less barley YAN broth, which gave losses of 22%. Solubilisation of AX and b-glucan from the cell walls of endosperm rye, wheat and hull-less barley occurred during cereal food processing. The most notable being approximately 19-25% insoluble dietary fibre (IDF) reduction from the cell wall in hull-less barley, rye and wheat, during bread baking and YAN production, and 22-29% in extruded food. Food processing may alter the phenolic ester bonding arrangements within the endosperm cell walls, thereby solubilising AX from the cell walls and increasing soluble AX amounts. Confocal images illustrate loosely held associations of b-glucan with the cell walls of processed foods, which is in contrast to the arabinoxylans which appear linked (possibly with ferulic acid) or more tightly held within the cell walls. The in vitro fermentation results suggest that fermentation kinetics for either processed or non-processed dietary fibre were not significantly different. Therefore, processing of the endosperm dietary fibres and the resulting formation of a fused cell wall food matrix, does not seem to significantly impede microbial access to enzyme target sites of the more easily fermentable substrates, namely soluble AX and b-glucan. Fermentation end products (SCFA) were similar for the dietary fibre types (endosperm WEAX and cell wall) and process conditions. However, significant differences were observed between the varying cereal grains. Hull-less barley produced a slightly higher propionic acid level, wheat promoted a slightly higher acetic acid level, and rye a higher butyric acid production for both processed and non-processed dietary fibre. However, both the wheat and rye grains did produce more butyric acid than barley perhaps due to their higher amounts of AX. Therefore, it appears that differences in carbohydrate composition and structure within the cell walls of a grain play a more important role in fermentation kinetics and end product profiles than the conditions of food processing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
于芋菊举报water求助涉嫌违规
刚刚
田様应助可爱的妙海采纳,获得10
1秒前
FanMaster完成签到,获得积分10
1秒前
顾矜应助小海采纳,获得10
1秒前
明理立果完成签到,获得积分20
1秒前
香蕉觅云应助TANG采纳,获得10
2秒前
2秒前
科研通AI2S应助xx采纳,获得10
2秒前
IZhuangXH发布了新的文献求助30
2秒前
IBMffff应助瘦瘦采纳,获得30
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
薰硝壤应助科研通管家采纳,获得20
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
科研通AI2S应助朱望舒采纳,获得10
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
CZY完成签到,获得积分10
6秒前
MHbb完成签到 ,获得积分10
6秒前
呆萌安萱完成签到,获得积分10
7秒前
jjb123666关注了科研通微信公众号
7秒前
时尚幻莲发布了新的文献求助10
7秒前
时光发布了新的文献求助10
7秒前
7秒前
俏皮不可完成签到,获得积分20
8秒前
faya完成签到 ,获得积分10
8秒前
8秒前
小二郎应助明亮访烟采纳,获得10
9秒前
Owen应助小薇丸子采纳,获得10
9秒前
宣洋发布了新的文献求助10
9秒前
CipherSage应助chencai采纳,获得10
9秒前
10秒前
在水一方应助哇哇哇采纳,获得50
10秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148993
求助须知:如何正确求助?哪些是违规求助? 2800076
关于积分的说明 7838336
捐赠科研通 2457543
什么是DOI,文献DOI怎么找? 1307913
科研通“疑难数据库(出版商)”最低求助积分说明 628328
版权声明 601685