The effects of food processing on the solubility and functionality of dietary fibre: Arabinoxylans and β-glucans

阿拉伯木聚糖 胚乳 膳食纤维 食品科学 抗性淀粉 多糖 淀粉 麸皮 膳食纤维 化学 消化(炼金术) 生物化学 有机化学 原材料 色谱法
作者
Penelope Comino
标识
DOI:10.14264/uql.2014.280
摘要

Cereal grains are very important for human nutrition as they are usually the largest single component of the diet in energy terms, and mainly consist of starch, protein and non-starch polysaccharides (NSP), namely arabinoxylan (AX) and b-glucans. NSPrs are a major component of dietary fibre and are found in cereal endosperm cell walls, as well as the aleurone layer, the bran and the husk. The major nutritional properties of dietary fibre are linked to the extent of solubilisation (in reality including insoluble but swollen states). From a nutritional functionality viewpoint the soluble and insoluble forms of dietary fibre offer varying nutritional health advantages e.g.; promotion of beneficial microflora, the prevention of re-absorption of bile acids leading to lower blood cholesterol, and retardation of starch digestion leading to controlled glycemia. The risk of serious diseases like colorectal cancer, cardiovascular disease, and diabetes can be reduced through the long term consumption of a healthy diet incorporating adequate dietary fibre. However, whilst these advantages of dietary fibre consumption are well established from a nutritional viewpoint, what is not known are the solubility and functional effects of cereal processing operations on AX and b-glucan. After all, cereal dietary fibre, particularly from the endosperm, is mainly consumed in a processed form. This thesis therefore reports a study of the effects of model food processes on three common food grains (wheat, rye, and hull-less barley), in order to establish structure-processing-nutrition relationships. The food processing conditions studied were fermentation 35˚C (dough), baking 200˚C (breads), extrusion pressures 6-18bar, and temperatures between 30˚C -130˚C (breakfast cereals) and lchemicalr/boiling 100˚C cooking conditions using yellow alkaline noodles (YAN). By examining and understanding the effects of various food processing conditions on the functionality and characteristics of dietary fibre, we will be able to gain a better understanding of how these food processes change the quantity, redistribution and composition of soluble and insoluble dietary fibre, and how and to what degree this affects the nutritional quality of finished foods. However, in order to fully characterise the unprocessed and processed soluble (AX and b-glucan) and insoluble forms (cell wall) of dietary fibre, these fractions needed to be extracted, separated and purified whilst also maintaining their inherent nutritional properties. The extraction fractionation method that was developed to achieve this is detailed in the first experimental chapter 3 lSeparation and Purification of Soluble Polymers and Cell Wall Fractions from Wheat, Rye and Hull-less Barley Endosperm Flours for Structure-Nutrition Studiesr. The structural and microscopic characteristics of dietary fibre fractions obtained by this method, including soluble and insoluble AX and b-glucan fine structures are detailed in the second experimental chapter 4lCharacterisation of soluble and Insoluble Cell Wall Fractions from Rye, Wheat and hull-less Barley Endosperm Floursr. In addition to the effects of food processing described in the fifth chapter, lThe Effects of Food Processing Conditions on the Nutritional Functionality and Solubility of Wheat, Barley and Rye Endosperm Dietary Fibrer, the in vitro fermentation, short chain fatty acid (SCFA) end products, and gas kinetic properties of dietary fibre fractions before and after food processing are reported in chapter 6 lIn Vitro Gas Kinetics of Soluble and Insoluble Processed and Unprocessed Dietary Fibrer. Overall, the processed AX and b-glucan results show that the amounts of dietary fibre were not significantly affected. No major losses of b-glucan and arabinoxylans were found across the various forms of processed foods, except for the b-glucan found in the hull-less barley YAN broth, which gave losses of 22%. Solubilisation of AX and b-glucan from the cell walls of endosperm rye, wheat and hull-less barley occurred during cereal food processing. The most notable being approximately 19-25% insoluble dietary fibre (IDF) reduction from the cell wall in hull-less barley, rye and wheat, during bread baking and YAN production, and 22-29% in extruded food. Food processing may alter the phenolic ester bonding arrangements within the endosperm cell walls, thereby solubilising AX from the cell walls and increasing soluble AX amounts. Confocal images illustrate loosely held associations of b-glucan with the cell walls of processed foods, which is in contrast to the arabinoxylans which appear linked (possibly with ferulic acid) or more tightly held within the cell walls. The in vitro fermentation results suggest that fermentation kinetics for either processed or non-processed dietary fibre were not significantly different. Therefore, processing of the endosperm dietary fibres and the resulting formation of a fused cell wall food matrix, does not seem to significantly impede microbial access to enzyme target sites of the more easily fermentable substrates, namely soluble AX and b-glucan. Fermentation end products (SCFA) were similar for the dietary fibre types (endosperm WEAX and cell wall) and process conditions. However, significant differences were observed between the varying cereal grains. Hull-less barley produced a slightly higher propionic acid level, wheat promoted a slightly higher acetic acid level, and rye a higher butyric acid production for both processed and non-processed dietary fibre. However, both the wheat and rye grains did produce more butyric acid than barley perhaps due to their higher amounts of AX. Therefore, it appears that differences in carbohydrate composition and structure within the cell walls of a grain play a more important role in fermentation kinetics and end product profiles than the conditions of food processing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ll完成签到,获得积分20
刚刚
霍巧凡发布了新的文献求助10
刚刚
beplayer1完成签到,获得积分10
1秒前
棕榈发布了新的文献求助10
2秒前
完美世界应助S1采纳,获得10
2秒前
2秒前
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
sophia完成签到,获得积分10
4秒前
4秒前
Lyp888206发布了新的文献求助10
5秒前
6秒前
ll发布了新的文献求助10
7秒前
sophia发布了新的文献求助20
7秒前
复杂绝悟发布了新的文献求助10
8秒前
9秒前
爱雪的猫发布了新的文献求助10
9秒前
9秒前
王倩倩发布了新的文献求助20
11秒前
shary完成签到,获得积分10
11秒前
甜蜜骁发布了新的文献求助30
12秒前
祖老头发布了新的文献求助10
13秒前
英俊的铭应助起司猫采纳,获得10
13秒前
Double完成签到 ,获得积分10
13秒前
科研通AI6应助不安的凡桃采纳,获得10
13秒前
Owen应助棕榈采纳,获得10
15秒前
Sakurasamada发布了新的文献求助20
15秒前
15秒前
白羊完成签到,获得积分10
16秒前
16秒前
薛之谦的猫应助任性白秋采纳,获得10
16秒前
向日葵完成签到 ,获得积分10
16秒前
Lee完成签到,获得积分10
17秒前
17秒前
18秒前
19秒前
Lee发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594501
求助须知:如何正确求助?哪些是违规求助? 4680157
关于积分的说明 14813307
捐赠科研通 4647283
什么是DOI,文献DOI怎么找? 2534960
邀请新用户注册赠送积分活动 1503016
关于科研通互助平台的介绍 1469521