Classification of Cytochrome P450 Inhibitors and Noninhibitors Using Combined Classifiers

人工智能 药物数据库 决策树 计算机科学 朴素贝叶斯分类器 支持向量机 机器学习 公共化学 人工神经网络 分类器(UML) 化学信息学 数量结构-活动关系 训练集 模式识别(心理学) 数据挖掘 计算生物学 生物信息学 药品 生物 药理学
作者
Feixiong Cheng,Yue Yu,Jie Shen,Lei Yang,Weihua Li,Guixia Liu,Philip W. Lee,Yun Tang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:51 (5): 996-1011 被引量:170
标识
DOI:10.1021/ci200028n
摘要

Adverse side effects of drug–drug interactions induced by human cytochrome P450 (CYP) inhibition is an important consideration, especially, during the research phase of drug discovery. It is highly desirable to develop computational models that can predict the inhibitive effect of a compound against a specific CYP isoform. In this study, inhibitor predicting models were developed for five major CYP isoforms, namely 1A2, 2C9, 2C19, 2D6, and 3A4, using a combined classifier algorithm on a large data set containing more than 24,700 unique compounds, extracted from PubChem. The combined classifiers algorithm is an ensemble of different independent machine learning classifiers including support vector machine, C4.5 decision tree, k-nearest neighbor, and naïve Bayes, fused by a back-propagation artificial neural network (BP-ANN). All developed models were validated by 5-fold cross-validation and a diverse validation set composed of about 9000 diverse unique compounds. The range of the area under the receiver operating characteristic curve (AUC) for the validation sets was 0.764 to 0.815 for CYP1A2, 0.837 to 0.861 for CYP2C9, 0.793 to 0.842 for CYP2C19, 0.839 to 0.886 for CYP2D6, and 0.754 to 0.790 for CYP3A4, respectively, using the new developed combined classifiers. The overall performance of the combined classifiers fused by BP-ANN was superior to that of three classic fusion techniques (Mean, Maximum, and Multiply). The chemical spaces of data sets were explored by multidimensional scaling plots, and the use of applicability domain improved the prediction accuracies of models. In addition, some representative substructure fragments differentiating CYP inhibitors and noninhibitors were characterized by the substructure fragment analysis. These classification models are applicable for virtual screening of the five major CYP isoforms inhibitors or can be used as simple filters of potential chemicals in drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mcl完成签到,获得积分10
2秒前
老王完成签到 ,获得积分0
5秒前
lpj发布了新的文献求助10
12秒前
缓慢冬天完成签到,获得积分10
12秒前
机灵火车完成签到,获得积分10
14秒前
小二郎应助科研通管家采纳,获得30
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
you完成签到,获得积分10
16秒前
lu完成签到,获得积分10
16秒前
殷勤的凝海完成签到 ,获得积分10
17秒前
xiaowang完成签到 ,获得积分10
19秒前
Prime完成签到 ,获得积分10
19秒前
欢呼的书包完成签到 ,获得积分10
20秒前
21秒前
每天都在找完成签到,获得积分10
25秒前
xuedan3000完成签到 ,获得积分10
27秒前
自然的小熊猫完成签到 ,获得积分10
28秒前
sdbz001完成签到,获得积分10
29秒前
邓娅琴完成签到 ,获得积分10
29秒前
归尘应助佩弦采纳,获得10
31秒前
lpj完成签到,获得积分20
33秒前
344061512完成签到 ,获得积分10
33秒前
34秒前
张西西完成签到 ,获得积分10
39秒前
南建丽完成签到,获得积分10
41秒前
flc1210完成签到 ,获得积分10
41秒前
木木完成签到 ,获得积分10
42秒前
43秒前
百宝完成签到,获得积分10
54秒前
罗氏集团完成签到,获得积分10
54秒前
无奈的萝完成签到,获得积分10
55秒前
路路有为完成签到 ,获得积分10
59秒前
tutu完成签到,获得积分10
1分钟前
完美世界应助百宝采纳,获得10
1分钟前
情怀应助flc1210采纳,获得10
1分钟前
快帮我找找完成签到,获得积分10
1分钟前
一白完成签到 ,获得积分10
1分钟前
田様应助pikahe采纳,获得10
1分钟前
无奈的萝发布了新的文献求助10
1分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413420
求助须知:如何正确求助?哪些是违规求助? 3015790
关于积分的说明 8871822
捐赠科研通 2703519
什么是DOI,文献DOI怎么找? 1482342
科研通“疑难数据库(出版商)”最低求助积分说明 685233
邀请新用户注册赠送积分活动 679970