Classification of Cytochrome P450 Inhibitors and Noninhibitors Using Combined Classifiers

人工智能 药物数据库 决策树 计算机科学 朴素贝叶斯分类器 支持向量机 机器学习 公共化学 人工神经网络 分类器(UML) 化学信息学 数量结构-活动关系 训练集 模式识别(心理学) 数据挖掘 计算生物学 生物信息学 药品 生物 药理学
作者
Feixiong Cheng,Yue Yu,Jie Shen,Lei Yang,Weihua Li,Guixia Liu,Philip W. Lee,Yun Tang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:51 (5): 996-1011 被引量:170
标识
DOI:10.1021/ci200028n
摘要

Adverse side effects of drug–drug interactions induced by human cytochrome P450 (CYP) inhibition is an important consideration, especially, during the research phase of drug discovery. It is highly desirable to develop computational models that can predict the inhibitive effect of a compound against a specific CYP isoform. In this study, inhibitor predicting models were developed for five major CYP isoforms, namely 1A2, 2C9, 2C19, 2D6, and 3A4, using a combined classifier algorithm on a large data set containing more than 24,700 unique compounds, extracted from PubChem. The combined classifiers algorithm is an ensemble of different independent machine learning classifiers including support vector machine, C4.5 decision tree, k-nearest neighbor, and naïve Bayes, fused by a back-propagation artificial neural network (BP-ANN). All developed models were validated by 5-fold cross-validation and a diverse validation set composed of about 9000 diverse unique compounds. The range of the area under the receiver operating characteristic curve (AUC) for the validation sets was 0.764 to 0.815 for CYP1A2, 0.837 to 0.861 for CYP2C9, 0.793 to 0.842 for CYP2C19, 0.839 to 0.886 for CYP2D6, and 0.754 to 0.790 for CYP3A4, respectively, using the new developed combined classifiers. The overall performance of the combined classifiers fused by BP-ANN was superior to that of three classic fusion techniques (Mean, Maximum, and Multiply). The chemical spaces of data sets were explored by multidimensional scaling plots, and the use of applicability domain improved the prediction accuracies of models. In addition, some representative substructure fragments differentiating CYP inhibitors and noninhibitors were characterized by the substructure fragment analysis. These classification models are applicable for virtual screening of the five major CYP isoforms inhibitors or can be used as simple filters of potential chemicals in drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南滨完成签到 ,获得积分10
2秒前
彭于晏应助wmuzhao采纳,获得10
2秒前
科研肥料完成签到,获得积分10
3秒前
4秒前
FashionBoy应助幽默艳采纳,获得20
4秒前
奔跑的青霉素完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
8秒前
zz发布了新的文献求助10
9秒前
reset完成签到 ,获得积分10
13秒前
15秒前
珂珂完成签到 ,获得积分10
15秒前
嘻嘻哈哈完成签到 ,获得积分10
17秒前
Jocelyn完成签到,获得积分10
19秒前
24秒前
朴素的紫安完成签到 ,获得积分10
25秒前
重要的惜萍完成签到,获得积分10
30秒前
天天快乐应助baixun采纳,获得10
34秒前
资山雁完成签到 ,获得积分10
36秒前
Cell完成签到 ,获得积分10
36秒前
凉凉发布了新的文献求助10
37秒前
Regulusyang完成签到,获得积分10
40秒前
淡然一德完成签到,获得积分10
41秒前
luckyalias完成签到 ,获得积分10
42秒前
香蕉觅云应助Goldensun采纳,获得10
45秒前
111222333完成签到 ,获得积分10
46秒前
量子星尘发布了新的文献求助10
50秒前
SDS完成签到 ,获得积分10
53秒前
Gentleman完成签到,获得积分10
53秒前
西瓜完成签到 ,获得积分10
53秒前
franca2005完成签到 ,获得积分10
57秒前
既然寄了,那就开摆完成签到 ,获得积分10
57秒前
59秒前
包容的忆灵完成签到 ,获得积分10
1分钟前
Goldensun完成签到,获得积分20
1分钟前
Goldensun发布了新的文献求助10
1分钟前
游鱼完成签到,获得积分10
1分钟前
1分钟前
1分钟前
随心所欲完成签到 ,获得积分10
1分钟前
泡泡茶壶o完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008711
求助须知:如何正确求助?哪些是违规求助? 3548365
关于积分的说明 11298818
捐赠科研通 3283040
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218