The effect of surface roughness parameters on contact and wettability of solid surfaces

表面粗糙度 材料科学 微尺度化学 润湿 表面光洁度 接触面积 摩擦学 接触力学 接触角 复合材料 曲面(拓扑) 均方根 各向同性腐蚀 光学 蚀刻(微加工) 几何学 数学 工程类 结构工程 物理 数学教育 电气工程 图层(电子) 有限元法
作者
Yilei Zhang
标识
DOI:10.31274/rtd-180813-17133
摘要

Surfaces of materials strongly affect functional properties such as mechanical, biological, optical, acoustic and electronic properties of materials, particularly at the micro/nano scale. Surface effects stem from the interplay of surface morphology and surface chemical properties. This dissertation focuses on (1) modeling the effect of surface roughness parameters on solid-solid contact and solid-liquid interaction as well as; (2) developing a surface engineering method that can generate random surfaces with desired amplitude and spatial roughness parameters for tribological and biomimetic applications.;Autocorrelation length (ACL) is a surface roughness parameter that provides spatial information of surface topography that is not included in amplitude parameters such as root-mean-square roughness. A relationship between ACL and the friction behavior of a rough surface was developed. The probability density function of peaks and the mean peak height of a profile were given as functions of its ACL. These results were used to estimate the number of contact points when a rough surface comes into contact with a flat surface, and it was shown that the larger the ACL of the rough surface, the less the number of contact points. Based on Hertzian contact mechanics, it was shown that the real area of contact increases with increasing of number of contact points. Results from microscale friction experiments (where friction force is proportional to real area of contact) on polished and etched silicon surfaces are presented to verify the analysis.;A versatile surface processing method based on electrostatic deposition of particles and subsequent dry etching was shown to be able to independently tailor the amplitude and spatial roughness parameters of the resulting surfaces. Statistical models were developed to connect process variables to the amplitude roughness parameters center line average, root mean square and the spatial parameter, autocorrelation length of the final surfaces. Process variables include particle coverage, which affected both amplitude and spatial roughness parameters, particle size, which affected only spatial parameters and etch depth, which affects only amplitude parameters. The autocorrelation length of the final surface closely followed a power law decay with particle coverage, the most significant processing parameter. Center line average, root mean square followed a nonlinear relation with particle coverage and particle size. Experimental results on silicon substrates agreed reasonably well with model predictions.;This same hybrid surface engineering process was used to demonstrate adhesion and friction reduction. Microscale adhesion and friction tests were conducted on flat (smooth) and processed silicon surfaces with a low elastic modulus thermoplastic rubber (Santoprene) probe that allowed a large enough contact area to observe the feature size effect. Both adhesion and friction force of the processed surfaces were reduced comparing to that of the flat surfaces.;The process is also used to generate superhydrophobic engineering surfaces by mimicking the structure of lotus leaves. Tunable bimodal roughness (in both micro and nano scale) and a thin hydrophobic fluorocarbon film were generated on an engineering material surface by the hybrid process. These surfaces exhibit contact angles with water of more than 160°. A geometric model was developed to related air-trapping ability of hydrophobic surfaces with hillock features to process variables (hillock diameter, etching depth and coverage) and contact angle. The model is shown to be able to predict minimum coverage of hillocks required for air-trapping on hydrophobic rough surfaces. The model predictions agree with experimental observations reasonably well. This model can particularly be extended to utilizing statistical roughness parameters to predict air-trapping for rough hydrophobic surfaces.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hxw完成签到,获得积分10
刚刚
qiqi完成签到,获得积分10
1秒前
straight发布了新的文献求助10
2秒前
Zhouzhou应助peterlzb1234567采纳,获得10
2秒前
hahaha发布了新的文献求助10
2秒前
传奇3应助LIU采纳,获得10
3秒前
sun发布了新的文献求助10
3秒前
3秒前
科研顺利发布了新的文献求助10
4秒前
4秒前
lvsehx发布了新的文献求助10
5秒前
NicheFactor完成签到,获得积分10
6秒前
7秒前
7秒前
玖熙发布了新的文献求助10
7秒前
8秒前
樊伟诚完成签到,获得积分10
8秒前
温暖寻雪发布了新的文献求助10
9秒前
小二郎应助hahaha采纳,获得10
9秒前
6666完成签到,获得积分10
10秒前
10秒前
a简很忙完成签到,获得积分20
10秒前
不能说的秘密完成签到,获得积分10
10秒前
科研顺利完成签到,获得积分10
10秒前
东方樱完成签到,获得积分10
11秒前
Jasper应助Mary采纳,获得10
11秒前
yoneking发布了新的文献求助30
11秒前
路弥完成签到,获得积分10
12秒前
12秒前
phil完成签到,获得积分10
12秒前
澎鱼盐完成签到,获得积分10
12秒前
12秒前
陌上花开发布了新的文献求助10
12秒前
6666发布了新的文献求助10
13秒前
小希发布了新的文献求助10
13秒前
善学以致用应助丸子她爸采纳,获得10
13秒前
卢西奥发布了新的文献求助10
13秒前
李健应助姚朵朵采纳,获得10
14秒前
cocolu应助小张12573采纳,获得10
14秒前
LIU完成签到,获得积分10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
鱼雷弹道与弹道设计 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3315613
求助须知:如何正确求助?哪些是违规求助? 2947457
关于积分的说明 8536645
捐赠科研通 2623604
什么是DOI,文献DOI怎么找? 1435185
科研通“疑难数据库(出版商)”最低求助积分说明 665532
邀请新用户注册赠送积分活动 651301