The effect of surface roughness parameters on contact and wettability of solid surfaces

表面粗糙度 材料科学 微尺度化学 润湿 表面光洁度 接触面积 摩擦学 接触力学 接触角 复合材料 曲面(拓扑) 均方根 各向同性腐蚀 光学 蚀刻(微加工) 几何学 数学 工程类 结构工程 物理 数学教育 有限元法 电气工程 图层(电子)
作者
Yilei Zhang
标识
DOI:10.31274/rtd-180813-17133
摘要

Surfaces of materials strongly affect functional properties such as mechanical, biological, optical, acoustic and electronic properties of materials, particularly at the micro/nano scale. Surface effects stem from the interplay of surface morphology and surface chemical properties. This dissertation focuses on (1) modeling the effect of surface roughness parameters on solid-solid contact and solid-liquid interaction as well as; (2) developing a surface engineering method that can generate random surfaces with desired amplitude and spatial roughness parameters for tribological and biomimetic applications.;Autocorrelation length (ACL) is a surface roughness parameter that provides spatial information of surface topography that is not included in amplitude parameters such as root-mean-square roughness. A relationship between ACL and the friction behavior of a rough surface was developed. The probability density function of peaks and the mean peak height of a profile were given as functions of its ACL. These results were used to estimate the number of contact points when a rough surface comes into contact with a flat surface, and it was shown that the larger the ACL of the rough surface, the less the number of contact points. Based on Hertzian contact mechanics, it was shown that the real area of contact increases with increasing of number of contact points. Results from microscale friction experiments (where friction force is proportional to real area of contact) on polished and etched silicon surfaces are presented to verify the analysis.;A versatile surface processing method based on electrostatic deposition of particles and subsequent dry etching was shown to be able to independently tailor the amplitude and spatial roughness parameters of the resulting surfaces. Statistical models were developed to connect process variables to the amplitude roughness parameters center line average, root mean square and the spatial parameter, autocorrelation length of the final surfaces. Process variables include particle coverage, which affected both amplitude and spatial roughness parameters, particle size, which affected only spatial parameters and etch depth, which affects only amplitude parameters. The autocorrelation length of the final surface closely followed a power law decay with particle coverage, the most significant processing parameter. Center line average, root mean square followed a nonlinear relation with particle coverage and particle size. Experimental results on silicon substrates agreed reasonably well with model predictions.;This same hybrid surface engineering process was used to demonstrate adhesion and friction reduction. Microscale adhesion and friction tests were conducted on flat (smooth) and processed silicon surfaces with a low elastic modulus thermoplastic rubber (Santoprene) probe that allowed a large enough contact area to observe the feature size effect. Both adhesion and friction force of the processed surfaces were reduced comparing to that of the flat surfaces.;The process is also used to generate superhydrophobic engineering surfaces by mimicking the structure of lotus leaves. Tunable bimodal roughness (in both micro and nano scale) and a thin hydrophobic fluorocarbon film were generated on an engineering material surface by the hybrid process. These surfaces exhibit contact angles with water of more than 160°. A geometric model was developed to related air-trapping ability of hydrophobic surfaces with hillock features to process variables (hillock diameter, etching depth and coverage) and contact angle. The model is shown to be able to predict minimum coverage of hillocks required for air-trapping on hydrophobic rough surfaces. The model predictions agree with experimental observations reasonably well. This model can particularly be extended to utilizing statistical roughness parameters to predict air-trapping for rough hydrophobic surfaces.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车茗应助科研通管家采纳,获得30
刚刚
科目三应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得30
刚刚
爆米花应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
TheSail发布了新的文献求助10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
iNk应助科研通管家采纳,获得20
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
情怀应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
jsl发布了新的文献求助10
3秒前
xg完成签到,获得积分20
3秒前
5秒前
5秒前
完美世界应助阿拉善采纳,获得10
5秒前
YW完成签到,获得积分10
5秒前
meng发布了新的文献求助10
5秒前
6秒前
大大怪z发布了新的文献求助10
7秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226726
求助须知:如何正确求助?哪些是违规求助? 4398101
关于积分的说明 13688414
捐赠科研通 4262779
什么是DOI,文献DOI怎么找? 2339284
邀请新用户注册赠送积分活动 1336666
关于科研通互助平台的介绍 1292702