Development, validation and implementation of an in vitro model for the study of metabolic and immune function in normal and inflamed human colonic epithelium.

医学 免疫系统 体外 功能(生物学) 上皮 计算生物学 免疫学 病理 细胞生物学 生物化学 生物
作者
Gitte Pedersen
出处
期刊:PubMed 卷期号:62 (1): B4973-B4973 被引量:20
链接
标识
摘要

Ulcerative colitis (UC) and Crohn's disease (CD), collectively referred to as inflammatory bowel disease (IBD), are chronic immune disorders affecting the gastrointestinal tract. The aetiology of IBD remains an enigma, but increasing evidence suggests that the development of IBD may be triggered by a disturbance in the balance between gut commensal bacteria and host response in the intestinal mucosa. It is now known that epithelial cells have the capacity to secrete and respond to a range of immunological mediators and this suggests that these cells play a prominent role in the pathogenesis of IBD. Current knowledge about the intestinal epithelium has mainly been obtained using models based on animal cells, transformed human intestinal cell lines and isolated cells from resected colonic bowel segments. Species difference, malignant origin and confounders related to surgery, obviously make these cell models however less applicable for patophysiological studies. Consequently, there was a clear need for models of representative intestinal epithelial cells that would allow functional and dynamic studies of the differentiated human colonic epithelium in vitro. The primary purpose of this thesis was to explore and validate the optimal conditions for establishing a model based on short-term cultures of human colonic epithelial cells obtained from endoscopical biopsies. The cell cultures were accordingly used to describe the interplay between proinflammatory cytokines and colonic epithelium, with focus on alterations in viability, butyrate metabolism and secretion of a chemokine and metalloproteinases (MMP). Finally, the model was used to characterize expression and activation of receptors like toll like receptor (TLR)9 and peroxisome activated proliferators (PPAR)- known to be important players in regulation of innate and adaptive immune responses in human colonic epithelium. The results showed that it is possible to establish short-term cultures of representative, viable human colonic epithelial cells from endoscopic mucosal biopsies of patients with IBD. Short-time isolation by EGTA/EDTA from colonic biopsies allowed establishment of small scale cultures of epithelial cells which were viable and metabolic active for up to 48 hours in vitro. The cell model preserved important cellular metabolic and immunological functions of the human colonic epithelium, including the ability to oxidate butyrate, detoxificate phenolic compounds and secrete the chemokine interleukin (IL)-8 in vitro. Tumour necrosis factor (TNF)-α and interferon (IFN)-γ are pro-inflammatory cytokines, which are present in increased amounts in inflamed colonic mucosa. The precise mechanisms of cytokine-mediated mucosal injury are unknown, but one might be that TNF-α and IFN-γ directly impair epithelial cell function similar to effects seen on distinct target cells in other autoimmune diseases. Using the model, both cytokines were found directly to impair the viability of colonic epithelial cells and to induce secretion of IL-8 in vitro. Interestingly, the cells from inflamed IBD mucosa were less sensitive to cytokine-induced damage, which suggests that an intrinsic defense mechanism is triggered in these cells, perhaps as a result of exposure to toxic luminal factors or high local cytokine levels in vivo. TNF-α and IFN-γ may also be involved in regulation of intestinal inflammation through stimulation of MMP expression and proteolytic activity. We found that colonic epithelial cells express a range of MMPs and moreover that expression of distinct MMPs is increased in cells from inflamed IBD mucosa. Using a functional peptide cleavage assay it was shown that epithelial cells secreted proteolytic active enzymes and that the functional MMP activity was increased in inflamed IBD mucosa. This suggests that colonic epithelial cells, like myofibroblasts and immune cells, may contribute to local intestinal mucosal damage, through secretion of active MMPs. Disturbance of recognition and discrimination of potentially harmful pathogens from commensals in the intestinal mucosa have increasingly been implicated in the pathogenesis of IBD. Our results revealed that colonic epithelial cells express TLR9, a key pattern recognition receptor. Interestingly, the differentiated epithelial cells, which have been exposed to the luminal bacterial flora in vivo, were unresponsive to TLR9 ligand stimulation, contrasting findings in the epithelial cell line HT-29 that is cultured continuously in bacteria free environment. These findings suggest, theoretically, that colonic epithelium may regulate immune responses to microbial antigens including commensal bacterial DNA through modulation of the TLR9 pathway. Currently, the results are in line with the emerging view, that the epithelium represents an important frontline cellular component of the innate immune system in the gut. PPARγ is a nuclear receptor involved in the regulation of lipid and carbonhydrate metabolism. Recent studies in rodent colitis models suggest that PPARγ also is involved in modulation of inflammatory processes in the colon. Using the model, we characterise expression and activity of PPARs in human colonic epithelium and, additionally, evaluated the functional significance of a possible imbalanced PPARγ regulation in relation to inflammation. Our experiments showed that colonic epithelial cells express PPARγ and furthermore that PPARγ signalling was impaired in inflamed UC epithelium. It was possible to restore PPARγ signalling in the cell cultures by stimulation with rosiglitazone (a synthetic PPARγ ligand) in vitro. Hence, these experiments prompted us to design a small controlled, clinical study exploring the possible stimulatory effects of rosiglitazone (a PPAR ligand) in vivo. Interestingly, it was found that topical application of rosiglitazone in patients with active distal UC reduced clinical activity and mucosal inflammation similar to the effects measured in patients treated with mesalazine enemas. Moreover, rectal application of rosiglitazone induced PPARγ signalling in the epithelium in vivo, supporting the view that activation of PPARγ may be a new potential therapeutic target in the treatment of UC. Overall, the in vitro model of representative human colonic epithelial cells has shown to be a useful technique for detailed studies of metabolic and immunological functions that are important for homeostasis of the colonic epithelium. Currently, the findings support the view that intestinal epithelial cells actively participate in immunological processes in the colonic mucosa. Additionally, the model seems to be applicable for generating and evaluating new therapeutic approaches from laboratory bench to bed line as illustrated by the PPARγ study. It is therefore probable, that studies in models of representative colonic epithelial cells, as the one described here, could contribute with important knowledge about the pathogenesis of human inflammatory colonic diseases also in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
illusion完成签到,获得积分10
1秒前
wanci应助王冉冉采纳,获得30
2秒前
树小夏发布了新的文献求助10
3秒前
小吴同学完成签到,获得积分10
3秒前
赘婿应助kk_yang采纳,获得10
4秒前
成就伟祺关注了科研通微信公众号
5秒前
能干的语芙完成签到 ,获得积分10
5秒前
无欲无求傻傻完成签到,获得积分10
5秒前
5秒前
5秒前
尊敬寒松完成签到 ,获得积分10
5秒前
糊涂的麦片完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
wanci应助wangdafa采纳,获得10
7秒前
竹子co完成签到,获得积分10
7秒前
steventj完成签到,获得积分10
7秒前
yz完成签到 ,获得积分10
8秒前
朴实山兰完成签到,获得积分10
9秒前
tkkdy发布了新的文献求助10
9秒前
蓁蓁发布了新的文献求助10
9秒前
醉熏的鑫发布了新的文献求助10
10秒前
独家双层汉堡完成签到,获得积分10
10秒前
Li完成签到,获得积分10
11秒前
xcx发布了新的文献求助10
11秒前
江小小发布了新的文献求助10
12秒前
12秒前
乐乐乐乐乐乐应助大橙子采纳,获得10
12秒前
伍六七完成签到,获得积分10
13秒前
shinen发布了新的文献求助10
13秒前
文艺的又亦完成签到,获得积分10
13秒前
小蘑菇应助妍儿采纳,获得10
14秒前
15秒前
义气天真完成签到,获得积分10
15秒前
满意易蓉发布了新的文献求助10
16秒前
16秒前
303完成签到 ,获得积分10
17秒前
海阔光明完成签到,获得积分10
17秒前
酷波er应助樾苒采纳,获得10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds第二卷 1200
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038657
求助须知:如何正确求助?哪些是违规求助? 3576306
关于积分的说明 11375198
捐赠科研通 3306108
什么是DOI,文献DOI怎么找? 1819379
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066