DeepLncLoc: a deep learning framework for long non-coding RNA subcellular localization prediction based on subsequence embedding

计算机科学 人工智能 深度学习 模式识别(心理学) 自编码 核糖核酸 人工神经网络 计算生物学 卷积神经网络 机器学习
作者
Min Zeng,Yifan Wu,Chengqian Lu,Fuhao Zhang,Fang-Xiang Wu,Min Li
出处
期刊:bioRxiv
标识
DOI:10.1101/2021.03.13.435245
摘要

Abstract Motivation Long non-coding RNAs (IncRNAs) are a class of RNA molecules with more than 200 nucleotides. A growing amount of evidence reveals that subcellular localization of lncRNAs can provide valuable insights into their biological functions. Existing computational methods for predicting lncRNA subcellular localization use k-mer features to encode lncRNA sequences. However, the sequence order information is lost by using only k-mer features. Results We proposed a deep learning framework, DeepLncLoc, to predict lncRNA subcellular localization. In DeepLncLoc, we introduced a new subsequence embedding method that keeps the order information of lncRNA sequences. The subsequence embedding method first divides a sequence into some consecutive subsequences, and then extracts the patterns of each subsequence, last combines these patterns to obtain a complete representation of the lncRNA sequence. After that, a text convolutional neural network is employed to learn high-level features and perform the prediction task. Compared to traditional machine learning models with k-mer features and existing predictors, DeepLncLoc achieved better performance, which shows that DeepLncLoc could effectively predict lncRNA subcellular localization. Our study not only presented a novel computational model for predicting lncRNA subcellular localization but also provided a new subsequence embedding method which is expected to be applied in other sequence-based prediction tasks. Availability The DeepLncLoc web server, source code and datasets are freely available at http://bioinformatics.csu.edu.cn/DeepLncLoc/, and https://github.com/CSUBioGroup/DeepLncLoc. Contact limin@mail.csu.edu.cn
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小绵羊完成签到,获得积分20
1秒前
辛勤万声发布了新的文献求助10
1秒前
Han完成签到,获得积分10
3秒前
4秒前
4秒前
李健应助未成年面包采纳,获得10
5秒前
5秒前
独特的凝云完成签到 ,获得积分10
5秒前
6秒前
白雪皑皑完成签到 ,获得积分10
7秒前
7秒前
在水一方应助李日辉采纳,获得10
7秒前
自由的无色完成签到 ,获得积分10
8秒前
yan完成签到 ,获得积分10
9秒前
旭宝儿完成签到,获得积分10
10秒前
FashionBoy应助sxy采纳,获得10
11秒前
李师傅的李宝贝完成签到,获得积分10
12秒前
14秒前
旭宝儿发布了新的文献求助10
14秒前
NagatoYuki完成签到,获得积分10
14秒前
关七完成签到,获得积分10
15秒前
lzzzz完成签到,获得积分10
17秒前
sheila完成签到 ,获得积分10
17秒前
Akim应助哈哈哈哈哈采纳,获得10
18秒前
20秒前
21秒前
英姑应助季生采纳,获得10
21秒前
无限的石头完成签到 ,获得积分10
22秒前
23秒前
三棱镜发布了新的文献求助10
23秒前
24秒前
24秒前
wjjokk完成签到,获得积分10
25秒前
夜倾心完成签到,获得积分10
25秒前
hy完成签到,获得积分10
26秒前
惠须一饮三杯杯完成签到,获得积分10
26秒前
柚子茶发布了新的文献求助10
26秒前
26秒前
27秒前
光余发布了新的文献求助10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137230
求助须知:如何正确求助?哪些是违规求助? 2788312
关于积分的说明 7785628
捐赠科研通 2444330
什么是DOI,文献DOI怎么找? 1299894
科研通“疑难数据库(出版商)”最低求助积分说明 625639
版权声明 601023