Detecting Sensitive Mobility Features for Parkinson's Disease Stages Via Machine Learning

帕金森病 步态 跨步 物理医学与康复 判别式 后备箱 可穿戴计算机 特征(语言学) 疾病 心理学 医学 人工智能 计算机科学 内科学 生物 语言学 哲学 嵌入式系统 生态学
作者
Anat Mirelman,Mor Ben Or Frank,Michal L. Melamed,Lena Granovsky,Alice Nieuwboer,Lynn Rochester,Silvia Del Din,Laura Avanzino,Elisa Pelosin,Bastiaan R. Bloem,Ugo Della Croce,Andrea Cereatti,Paolo Bonato,Richard Camicioli,Theresa Ellis,Jamie Hamilton,Chris J. Hass,Quincy J. Almeida,Inbal Maidan,Avner Thaler,Julia Shirvan,Jesse M. Cedarbaum,Nir Giladi,Jeffrey M. Hausdorff
出处
期刊:Movement Disorders [Wiley]
卷期号:36 (9): 2144-2155 被引量:58
标识
DOI:10.1002/mds.28631
摘要

ABSTRACT Background It is not clear how specific gait measures reflect disease severity across the disease spectrum in Parkinson's disease (PD). Objective To identify the gait and mobility measures that are most sensitive and reflective of PD motor stages and determine the optimal sensor location in each disease stage. Methods Cross‐sectional wearable‐sensor records were collected in 332 patients with PD (Hoehn and Yahr scale I−III) and 100 age‐matched healthy controls. Sensors were adhered to the participant's lower back, bilateral ankles, and wrists. Study participants walked in a ~15‐meter corridor for 1 minute under two walking conditions: (1) preferred, usual walking speed and (2) walking while engaging in a cognitive task (dual‐task). A subgroup (n = 303, 67% PD) also performed the Timed Up and Go test. Multiple machine‐learning feature selection and classification algorithms were applied to discriminate between controls and PD and between the different PD severity stages. Results High discriminatory values were found between motor disease stages with mean sensitivity in the range 72%–83%, specificity 69%–80%, and area under the curve (AUC) 0.76–0.90. Measures from upper‐limb sensors best discriminated controls from early PD, turning measures obtained from the trunk sensor were prominent in mid‐stage PD, and stride timing and regularity were discriminative in more advanced stages. Conclusions Applying machine‐learning to multiple, wearable‐derived features reveals that different measures of gait and mobility are associated with and discriminate distinct stages of PD. These disparate feature sets can augment the objective monitoring of disease progression and may be useful for cohort selection and power analyses in clinical trials of PD. © 2021 International Parkinson and Movement Disorder Society
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3033发布了新的文献求助10
刚刚
1秒前
fxfcpu完成签到,获得积分10
1秒前
noyal发布了新的文献求助10
3秒前
QIQI发布了新的文献求助10
3秒前
大模型应助Catherine_Song采纳,获得10
4秒前
5秒前
6秒前
Ava应助林方人点点采纳,获得30
6秒前
Sifan发布了新的文献求助10
8秒前
bodhi发布了新的文献求助10
9秒前
111发布了新的文献求助10
9秒前
无语发布了新的文献求助10
10秒前
10秒前
大大泡泡发布了新的文献求助10
10秒前
11秒前
Elvira完成签到,获得积分10
11秒前
灰灰喵完成签到 ,获得积分10
11秒前
毛头侠发布了新的文献求助10
11秒前
11秒前
饭神仙鱼完成签到,获得积分10
13秒前
于金完成签到,获得积分10
13秒前
天涯倦客发布了新的文献求助10
14秒前
毛球完成签到,获得积分10
15秒前
16秒前
17秒前
axi完成签到,获得积分10
20秒前
20秒前
mugglea发布了新的文献求助10
21秒前
搞怪的汉堡完成签到 ,获得积分10
21秒前
大方的若山应助郭大王采纳,获得10
22秒前
劲秉应助流星采纳,获得50
22秒前
22秒前
无语完成签到,获得积分10
23秒前
杨yang发布了新的文献求助10
24秒前
天涯倦客完成签到,获得积分10
25秒前
Tony发布了新的文献求助10
27秒前
27秒前
28秒前
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351649
求助须知:如何正确求助?哪些是违规求助? 2977118
关于积分的说明 8677840
捐赠科研通 2658157
什么是DOI,文献DOI怎么找? 1455504
科研通“疑难数据库(出版商)”最低求助积分说明 674001
邀请新用户注册赠送积分活动 664503