Highly Dispersed Sn-beta Zeolites as Active Catalysts for Baeyer–Villiger Oxidation: The Role of Mobile, In Situ Sn(II)O Species in Solid-State Stannation

煅烧 催化作用 路易斯酸 穆斯堡尔谱学 化学 漫反射红外傅里叶变换 热重分析 色散(光学) X射线光电子能谱 物理吸附 无机化学 化学工程 分析化学(期刊) 结晶学 有机化学 光催化 工程类 物理 光学
作者
Elise Peeters,Guillaume Pomalaza,Ibrahim Khalil,Arnaud Detaille,Damien P. Debecker,Alexios P. Douvalis,Michiel Dusselier,Bert F. Sels
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:11 (10): 5984-5998 被引量:36
标识
DOI:10.1021/acscatal.1c00435
摘要

Solid-state incorporation of Sn into beta (β) zeolites is a fast and efficient method to obtain Lewis acidic Snβ catalysts with high activity. The present work emphasizes the fundamental role of the heat-treatment atmosphere in the solid-state incorporation of active Sn in zeolites. Via an array of characterization tools including N2-physisorption, X-ray diffraction, diffuse reflectance UV–vis spectrocopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and 119Sn Mössbauer spectroscopy, it is shown that preheating under an inert atmosphere (pre-pyrolysis) prior to air-calcination affords Sn-β catalysts with the highest Sn dispersion and significantly less extra-framework SnO2 compared to the classic calcination. In situ characterization during pre-pyrolysis by temperature-programed decomposition–mass spectrometry, thermogravimetric analysis, and 119Sn Mössbauer spectroscopy reveals the in situ generation of Sn(II)O species that are more mobile than Sn(IV)O2 species generated during calcination. This mobility property essentially enables the high Sn dispersion in Snβ. Based on this knowledge, active sites per catalyst weight are maximized while retaining high turn-over frequencies for the Baeyer–Villiger oxidation reaction (300 h–1 at 80 °C). For Lewis acid densities above 200 μmol·g–1, the catalytic activity unexpectedly leveled off to 93 mM·h–1, even under kinetic control. We tentatively ascribe the activity plateau to the incorporation of Sn in less favorable T-sites at high Sn-loadings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
3秒前
4秒前
青草蛋糕完成签到 ,获得积分10
5秒前
复杂储发布了新的文献求助10
5秒前
MCst发布了新的文献求助10
6秒前
芝士发布了新的文献求助10
7秒前
7秒前
shuaige完成签到,获得积分20
7秒前
linjunqi发布了新的文献求助10
7秒前
李健应助着急的青枫采纳,获得10
7秒前
8秒前
明越发布了新的文献求助10
8秒前
陈美宏完成签到,获得积分10
8秒前
坦率灵槐应助小白脸采纳,获得10
8秒前
Lilly完成签到,获得积分10
8秒前
yshog完成签到,获得积分10
8秒前
9秒前
9秒前
吉安娜完成签到,获得积分10
9秒前
10秒前
pzh发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
小马甲应助阔达宝莹采纳,获得10
12秒前
lhlhl发布了新的文献求助10
12秒前
12秒前
MCst完成签到,获得积分10
12秒前
13秒前
嘿嘿发布了新的文献求助30
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649011
求助须知:如何正确求助?哪些是违规求助? 4777097
关于积分的说明 15046363
捐赠科研通 4807843
什么是DOI,文献DOI怎么找? 2571160
邀请新用户注册赠送积分活动 1527756
关于科研通互助平台的介绍 1486683