Nanofluidic Membranes to Address the Challenges of Salinity Gradient Power Harvesting

渗透力 反向电渗析 缓压渗透 结垢 生物污染 正渗透 可再生能源 发电 功率密度 海水淡化 材料科学 工艺工程 纳米流体学 反渗透 化学 纳米孔 纳米技术 生化工程 功率(物理) 工程类 电渗析 电气工程 生物化学 物理 量子力学
作者
Xin Tong,Su Liu,John C. Crittenden,Yongsheng Chen
出处
期刊:ACS Nano [American Chemical Society]
卷期号:15 (4): 5838-5860 被引量:90
标识
DOI:10.1021/acsnano.0c09513
摘要

Salinity gradient power (SGP) has been identified as a promising renewable energy source. Reverse electrodialysis (RED) and pressure retarded osmosis (PRO) are two membrane-based technologies for SGP harvesting. Developing nanopores and nanofluidic membranes with excellent water and/or ion transport properties for applications in those two membrane-based technologies is considered viable for improving power generation performance. Despite recent efforts to advance power generation by designing a variety of nanopores and nanofluidic membranes to enhance power density, the valid pathways toward large-scale power generation remain uncertain. In this review, we introduce the features of ion and water transport in nanofluidics that are potentially beneficial to power generation. Subsequently, we survey previous efforts on nanofluidic membrane synthesis to obtain high power density. We also discuss how the various membrane properties influence the power density in RED and PRO before moving on to other important aspects of the technologies, i.e., system energy efficiency and membrane fouling. We analyze the importance of system energy efficiency and illustrate how the delicately designed nanofluidic membranes can potentially enhance energy efficiency. Previous studies are reviewed on fabricating antifouling and antimicrobial membrane for power generation, and opportunities are presented that can lead to the design of nanofluidic membranes with superior antifouling properties using various materials. Finally, future research directions are presented on advancing membrane performance and scaling-up the system. We conclude this review by emphasizing the fact that SGP has the potential to become an important renewable energy source and that high-performance nanofluidic membranes can transform SGP harvesting from conceptual to large-scale applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kamelia完成签到,获得积分10
2秒前
2秒前
6秒前
7秒前
7秒前
8秒前
wsh发布了新的文献求助10
9秒前
12秒前
可靠邑发布了新的文献求助10
12秒前
李健应助wsh采纳,获得10
13秒前
erin完成签到 ,获得积分10
15秒前
鱼前发布了新的文献求助10
16秒前
丷浅碎时光关注了科研通微信公众号
18秒前
JamesPei应助格格采纳,获得10
19秒前
19秒前
22秒前
在水一方应助xxp采纳,获得10
23秒前
AimforBiu完成签到,获得积分10
24秒前
tianzml0应助噜噜晓采纳,获得10
25秒前
27秒前
CipherSage应助豆子采纳,获得10
27秒前
鱼前完成签到,获得积分10
30秒前
34秒前
34秒前
该饮茶了发布了新的文献求助10
35秒前
36秒前
乐乐应助Aimee采纳,获得10
36秒前
40秒前
格格发布了新的文献求助10
41秒前
找不到完成签到,获得积分0
41秒前
英俊的铭应助小慧儿采纳,获得10
43秒前
shannian完成签到,获得积分10
46秒前
Gia完成签到,获得积分10
48秒前
wanci应助懵懂的仙人掌采纳,获得10
49秒前
49秒前
cici完成签到,获得积分10
50秒前
52秒前
赎罪完成签到 ,获得积分10
52秒前
xxp发布了新的文献求助10
53秒前
54秒前
高分求助中
LNG地下式貯槽指針(JGA指-107) 1000
LNG地上式貯槽指針 (JGA指 ; 108) 1000
Preparation and Characterization of Five Amino-Modified Hyper-Crosslinked Polymers and Performance Evaluation for Aged Transformer Oil Reclamation 700
Operative Techniques in Pediatric Orthopaedic Surgery 510
How Stories Change Us A Developmental Science of Stories from Fiction and Real Life 500
九经直音韵母研究 500
Full waveform acoustic data processing 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2932134
求助须知:如何正确求助?哪些是违规求助? 2585797
关于积分的说明 6969220
捐赠科研通 2232630
什么是DOI,文献DOI怎么找? 1185791
版权声明 589681
科研通“疑难数据库(出版商)”最低求助积分说明 580620