Nanofluidic Membranes to Address the Challenges of Salinity Gradient Power Harvesting

渗透力 反向电渗析 缓压渗透 结垢 生物污染 正渗透 可再生能源 发电 功率密度 海水淡化 材料科学 膜污染 工艺工程 纳米流体学 反渗透 化学 纳米孔 纳米技术 生化工程 功率(物理) 工程类 电渗析 电气工程 物理 量子力学 生物化学
作者
Xin Tong,Su Liu,John C. Crittenden,Yongsheng Chen
出处
期刊:ACS Nano [American Chemical Society]
卷期号:15 (4): 5838-5860 被引量:140
标识
DOI:10.1021/acsnano.0c09513
摘要

Salinity gradient power (SGP) has been identified as a promising renewable energy source. Reverse electrodialysis (RED) and pressure retarded osmosis (PRO) are two membrane-based technologies for SGP harvesting. Developing nanopores and nanofluidic membranes with excellent water and/or ion transport properties for applications in those two membrane-based technologies is considered viable for improving power generation performance. Despite recent efforts to advance power generation by designing a variety of nanopores and nanofluidic membranes to enhance power density, the valid pathways toward large-scale power generation remain uncertain. In this review, we introduce the features of ion and water transport in nanofluidics that are potentially beneficial to power generation. Subsequently, we survey previous efforts on nanofluidic membrane synthesis to obtain high power density. We also discuss how the various membrane properties influence the power density in RED and PRO before moving on to other important aspects of the technologies, i.e., system energy efficiency and membrane fouling. We analyze the importance of system energy efficiency and illustrate how the delicately designed nanofluidic membranes can potentially enhance energy efficiency. Previous studies are reviewed on fabricating antifouling and antimicrobial membrane for power generation, and opportunities are presented that can lead to the design of nanofluidic membranes with superior antifouling properties using various materials. Finally, future research directions are presented on advancing membrane performance and scaling-up the system. We conclude this review by emphasizing the fact that SGP has the potential to become an important renewable energy source and that high-performance nanofluidic membranes can transform SGP harvesting from conceptual to large-scale applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
笨笨善若发布了新的文献求助10
2秒前
2秒前
3秒前
樘樘完成签到,获得积分10
3秒前
一个有点长的序完成签到 ,获得积分10
4秒前
孙淳完成签到,获得积分10
5秒前
5秒前
YYJ25发布了新的文献求助10
6秒前
Jzhang应助tmpstlml采纳,获得10
7秒前
微笑的南露完成签到 ,获得积分10
7秒前
豌豆关注了科研通微信公众号
7秒前
10秒前
笨笨善若完成签到,获得积分10
12秒前
hs完成签到,获得积分20
12秒前
ZHANGMANLI0422完成签到,获得积分10
12秒前
susu关注了科研通微信公众号
14秒前
DYuH23完成签到,获得积分10
15秒前
16秒前
爱静静应助DHL采纳,获得10
16秒前
16秒前
sunny661104完成签到 ,获得积分10
17秒前
简单完成签到 ,获得积分10
17秒前
尘林发布了新的文献求助10
17秒前
Z-先森完成签到,获得积分0
18秒前
苏源智发布了新的文献求助10
18秒前
伯赏诗霜完成签到,获得积分10
19秒前
NN应助LIn采纳,获得10
20秒前
20秒前
超级无敌学术苦瓜完成签到,获得积分10
20秒前
20秒前
Zn应助111采纳,获得10
21秒前
舒适静丹完成签到,获得积分10
22秒前
丽颖发布了新的文献求助10
23秒前
cui完成签到,获得积分10
23秒前
lixm完成签到,获得积分10
23秒前
yyyyy语言完成签到,获得积分10
23秒前
栗子完成签到,获得积分10
24秒前
卧镁铀钳完成签到 ,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849