Nanofluidic Membranes to Address the Challenges of Salinity Gradient Power Harvesting

渗透力 反向电渗析 缓压渗透 结垢 生物污染 正渗透 可再生能源 发电 功率密度 海水淡化 材料科学 膜污染 工艺工程 纳米流体学 反渗透 化学 纳米孔 纳米技术 生化工程 功率(物理) 工程类 电渗析 电气工程 物理 量子力学 生物化学
作者
Xin Tong,Su Liu,John C. Crittenden,Yongsheng Chen
出处
期刊:ACS Nano [American Chemical Society]
卷期号:15 (4): 5838-5860 被引量:148
标识
DOI:10.1021/acsnano.0c09513
摘要

Salinity gradient power (SGP) has been identified as a promising renewable energy source. Reverse electrodialysis (RED) and pressure retarded osmosis (PRO) are two membrane-based technologies for SGP harvesting. Developing nanopores and nanofluidic membranes with excellent water and/or ion transport properties for applications in those two membrane-based technologies is considered viable for improving power generation performance. Despite recent efforts to advance power generation by designing a variety of nanopores and nanofluidic membranes to enhance power density, the valid pathways toward large-scale power generation remain uncertain. In this review, we introduce the features of ion and water transport in nanofluidics that are potentially beneficial to power generation. Subsequently, we survey previous efforts on nanofluidic membrane synthesis to obtain high power density. We also discuss how the various membrane properties influence the power density in RED and PRO before moving on to other important aspects of the technologies, i.e., system energy efficiency and membrane fouling. We analyze the importance of system energy efficiency and illustrate how the delicately designed nanofluidic membranes can potentially enhance energy efficiency. Previous studies are reviewed on fabricating antifouling and antimicrobial membrane for power generation, and opportunities are presented that can lead to the design of nanofluidic membranes with superior antifouling properties using various materials. Finally, future research directions are presented on advancing membrane performance and scaling-up the system. We conclude this review by emphasizing the fact that SGP has the potential to become an important renewable energy source and that high-performance nanofluidic membranes can transform SGP harvesting from conceptual to large-scale applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助搞搞科研采纳,获得10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
5秒前
搞搞科研完成签到,获得积分10
6秒前
7秒前
科研通AI5应助科研小白采纳,获得10
8秒前
syiimo完成签到 ,获得积分10
8秒前
sdgd完成签到,获得积分10
8秒前
9秒前
12秒前
浮游应助xiangjinmao采纳,获得10
12秒前
leaolf应助野性的胡萝卜采纳,获得20
12秒前
好好学习的大大莹完成签到,获得积分10
13秒前
13秒前
Gxlm发布了新的文献求助10
14秒前
Camellia完成签到,获得积分10
15秒前
科研通AI5应助静静等待采纳,获得10
15秒前
青烟发布了新的文献求助10
19秒前
爆米花应助鹿小薇采纳,获得10
19秒前
ldwyy发布了新的文献求助10
19秒前
李健应助王杰采纳,获得10
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
优秀发布了新的文献求助20
22秒前
22秒前
ZSJ完成签到,获得积分10
22秒前
qiuuuuu发布了新的文献求助10
23秒前
无聊的老姆完成签到 ,获得积分10
23秒前
充电宝应助微笑的桐采纳,获得10
24秒前
25秒前
李玉琼完成签到,获得积分10
25秒前
科研小白发布了新的文献求助10
27秒前
科研通AI5应助yjfff采纳,获得10
27秒前
班小班完成签到,获得积分10
27秒前
lntano发布了新的文献求助10
29秒前
29秒前
慕青应助1988采纳,获得10
30秒前
情怀应助violet采纳,获得10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601531
求助须知:如何正确求助?哪些是违规求助? 4011197
关于积分的说明 12418641
捐赠科研通 3691181
什么是DOI,文献DOI怎么找? 2034916
邀请新用户注册赠送积分活动 1068216
科研通“疑难数据库(出版商)”最低求助积分说明 952765