AdaRNN

计算机科学 匹配(统计) 时间序列 系列(地层学) 人工智能 机器学习 分布(数学) 模式识别(心理学) 数据挖掘 算法 数学 统计 生物 数学分析 古生物学
作者
Yuntao Du,Jindong Wang,Wenjie Feng,Sinno Jialin Pan,Tao Qin,Renjun Xu,Chongjun Wang
出处
期刊:Conference on Information and Knowledge Management 卷期号:: 402-411 被引量:112
标识
DOI:10.1145/3459637.3482315
摘要

Time series has wide applications in the real world and is known to be difficult to forecast. Since its statistical properties change over time, its distribution also changes temporally, which will cause severe distribution shift problem to existing methods. However, it remains unexplored to model the time series in the distribution perspective. In this paper, we term this as Temporal Covariate Shift (TCS). This paper proposes Adaptive RNNs (AdaRNN) to tackle the TCS problem by building an adaptive model that generalizes well on the unseen test data. AdaRNN is sequentially composed of two novel algorithms. First, we propose Temporal Distribution Characterization to better characterize the distribution information in the TS. Second, we propose Temporal Distribution Matching to reduce the distribution mismatch in TS to learn the adaptive TS model. AdaRNN is a general framework with flexible distribution distances integrated. Experiments on human activity recognition, air quality prediction, and financial analysis show that AdaRNN outperforms the latest methods by a classification accuracy of 2.6% and significantly reduces the RMSE by 9.0%. We also show that the temporal distribution matching algorithm can be extended in Transformer structure to boost its performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瘦瘦的背包完成签到,获得积分10
1秒前
1秒前
赘婿应助Elaine采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
科研小白完成签到,获得积分10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
2秒前
2秒前
思源应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得50
2秒前
CodeCraft应助科研通管家采纳,获得30
2秒前
控制小弟应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
彭于晏完成签到,获得积分10
3秒前
勤劳元瑶完成签到,获得积分10
3秒前
whatever举报muzi求助涉嫌违规
4秒前
小白发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
搬砖工完成签到,获得积分10
5秒前
Lucas应助圈圈采纳,获得10
6秒前
NexusExplorer应助韭菜盒子采纳,获得10
6秒前
6秒前
Harlotte发布了新的文献求助10
6秒前
就是我完成签到,获得积分10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740