A reinforcement learning approach for finding optimal policy of adaptive radiation therapy considering uncertain tumor biological response

计算机科学 强化学习 放射治疗 适应(眼睛) 地铁列车时刻表 放射治疗计划 适应性反应 人工智能 医学 生物 遗传学 操作系统 内科学 神经科学
作者
Saba Ebrahimi,Gino J. Lim
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:121: 102193-102193 被引量:16
标识
DOI:10.1016/j.artmed.2021.102193
摘要

Recent studies have shown that a tumor's biological response to radiation varies over time and has a dynamic nature. Dynamic biological features of tumor cells underscore the importance of using fractionation and adapting the treatment plan to tumor volume changes in radiation therapy treatment. Adaptive radiation therapy (ART) is an iterative process to adjust the dose of radiation in response to potential changes during the treatment. One of the key challenges in ART is how to determine the optimal timing of adaptations corresponding to tumor response to radiation. This paper aims to develop an automated treatment planning framework incorporating the biological uncertainties to find the optimal adaptation points to achieve a more effective treatment plan. First, a dynamic tumor-response model is proposed to predict weekly tumor volume regression during the period of radiation therapy treatment based on biological factors. Second, a Reinforcement Learning (RL) framework is developed to find the optimal adaptation points for ART considering the uncertainty in biological factors with the goal of achieving maximum final tumor control while minimizing or maintaining the toxicity level of the organs at risk (OARs) per the decision-maker's preference. Third, a beamlet intensity optimization model is solved using the predicted tumor volume at each adaptation point. The performance of the proposed RT treatment planning framework is tested using a clinical non-small cell lung cancer (NSCLC) case. The results are compared with the conventional fractionation schedule (i.e., equal dose fractionation) as a reference plan. The results show that the proposed approach performed well in achieving a robust optimal ART treatment plan under high uncertainty in the biological parameters. The ART plan outperformed the reference plan by increasing the mean biological effective dose (BED) value of the tumor by 2.01%, while maintaining the OAR BED within +0.5% and reducing the variability, in terms of the interquartile range (IQR) of tumor BED, by 25%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咖喱饭11发布了新的文献求助10
1秒前
MoodMeed完成签到 ,获得积分10
3秒前
4秒前
YJJ发布了新的文献求助10
7秒前
科研通AI5应助unique采纳,获得10
11秒前
kyfw完成签到,获得积分20
11秒前
星辰大海应助LIO采纳,获得10
11秒前
小小鱼完成签到 ,获得积分10
12秒前
李健应助湛刘佳采纳,获得10
14秒前
16秒前
科研通AI2S应助青果采纳,获得30
16秒前
17秒前
点酒成诗完成签到,获得积分10
18秒前
19秒前
19秒前
xingyu发布了新的文献求助10
21秒前
优秀傲松完成签到,获得积分10
21秒前
香蕉觅云应助不敢装睡采纳,获得10
21秒前
白忘幽完成签到,获得积分10
22秒前
24秒前
24秒前
优美鱼发布了新的文献求助10
24秒前
27秒前
微笑襄完成签到 ,获得积分10
27秒前
28秒前
ddd发布了新的文献求助10
28秒前
28秒前
29秒前
脑洞疼应助xingyu采纳,获得10
30秒前
湛刘佳发布了新的文献求助10
30秒前
unique发布了新的文献求助10
31秒前
memory完成签到,获得积分10
32秒前
青果发布了新的文献求助30
32秒前
Gilana应助wodeqiche2007采纳,获得30
32秒前
LIO发布了新的文献求助10
34秒前
34秒前
小Q完成签到,获得积分10
34秒前
Lucas应助爱吃蛋饼的zach采纳,获得10
35秒前
yzm完成签到,获得积分10
37秒前
科目三应助ddd采纳,获得10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761895
求助须知:如何正确求助?哪些是违规求助? 3305631
关于积分的说明 10135016
捐赠科研通 3019709
什么是DOI,文献DOI怎么找? 1658368
邀请新用户注册赠送积分活动 792029
科研通“疑难数据库(出版商)”最低求助积分说明 754766