A reinforcement learning approach for finding optimal policy of adaptive radiation therapy considering uncertain tumor biological response

计算机科学 强化学习 放射治疗 适应(眼睛) 地铁列车时刻表 放射治疗计划 适应性反应 人工智能 医学 生物 遗传学 操作系统 内科学 神经科学
作者
Saba Ebrahimi,Gino J. Lim
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:121: 102193-102193 被引量:16
标识
DOI:10.1016/j.artmed.2021.102193
摘要

Recent studies have shown that a tumor's biological response to radiation varies over time and has a dynamic nature. Dynamic biological features of tumor cells underscore the importance of using fractionation and adapting the treatment plan to tumor volume changes in radiation therapy treatment. Adaptive radiation therapy (ART) is an iterative process to adjust the dose of radiation in response to potential changes during the treatment. One of the key challenges in ART is how to determine the optimal timing of adaptations corresponding to tumor response to radiation. This paper aims to develop an automated treatment planning framework incorporating the biological uncertainties to find the optimal adaptation points to achieve a more effective treatment plan. First, a dynamic tumor-response model is proposed to predict weekly tumor volume regression during the period of radiation therapy treatment based on biological factors. Second, a Reinforcement Learning (RL) framework is developed to find the optimal adaptation points for ART considering the uncertainty in biological factors with the goal of achieving maximum final tumor control while minimizing or maintaining the toxicity level of the organs at risk (OARs) per the decision-maker's preference. Third, a beamlet intensity optimization model is solved using the predicted tumor volume at each adaptation point. The performance of the proposed RT treatment planning framework is tested using a clinical non-small cell lung cancer (NSCLC) case. The results are compared with the conventional fractionation schedule (i.e., equal dose fractionation) as a reference plan. The results show that the proposed approach performed well in achieving a robust optimal ART treatment plan under high uncertainty in the biological parameters. The ART plan outperformed the reference plan by increasing the mean biological effective dose (BED) value of the tumor by 2.01%, while maintaining the OAR BED within +0.5% and reducing the variability, in terms of the interquartile range (IQR) of tumor BED, by 25%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lh发布了新的文献求助10
刚刚
顺心尔岚发布了新的文献求助10
2秒前
汉堡包应助fxy采纳,获得10
2秒前
忧伤的皮皮虾完成签到 ,获得积分10
2秒前
仁继宪发布了新的文献求助10
3秒前
mmyhn应助夏日天空采纳,获得20
4秒前
6秒前
吃鱼的猫完成签到,获得积分10
6秒前
7秒前
酷波er应助陶醉西牛采纳,获得10
8秒前
搜集达人应助要减肥天问采纳,获得10
9秒前
lh完成签到,获得积分10
9秒前
hehehe完成签到,获得积分10
11秒前
Angelie完成签到 ,获得积分10
12秒前
13秒前
xjcy应助limumu采纳,获得10
14秒前
春夏爱科研完成签到,获得积分10
14秒前
森鹿应助氪金读书采纳,获得120
16秒前
稳重书包完成签到 ,获得积分10
16秒前
吴思瑞发布了新的文献求助10
18秒前
19秒前
20秒前
21秒前
22秒前
22秒前
23秒前
25秒前
热情的豁发布了新的文献求助10
25秒前
顺利发布了新的文献求助10
26秒前
joe完成签到,获得积分10
27秒前
Kev完成签到,获得积分10
27秒前
27秒前
小蘑菇应助谦让绯采纳,获得30
28秒前
大模型应助小路采纳,获得10
28秒前
fy发布了新的文献求助10
31秒前
jevon应助吃猫的鱼采纳,获得10
31秒前
Xdz发布了新的文献求助10
31秒前
32秒前
Owen应助心理学小白白白白采纳,获得50
32秒前
许飞飞飞发布了新的文献求助30
33秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207432
求助须知:如何正确求助?哪些是违规求助? 2856751
关于积分的说明 8106993
捐赠科研通 2522025
什么是DOI,文献DOI怎么找? 1355312
科研通“疑难数据库(出版商)”最低求助积分说明 642208
邀请新用户注册赠送积分活动 613478