亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A reinforcement learning approach for finding optimal policy of adaptive radiation therapy considering uncertain tumor biological response

计算机科学 强化学习 放射治疗 适应(眼睛) 地铁列车时刻表 放射治疗计划 适应性反应 人工智能 医学 生物 遗传学 操作系统 内科学 神经科学
作者
Saba Ebrahimi,Gino J. Lim
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:121: 102193-102193 被引量:16
标识
DOI:10.1016/j.artmed.2021.102193
摘要

Recent studies have shown that a tumor's biological response to radiation varies over time and has a dynamic nature. Dynamic biological features of tumor cells underscore the importance of using fractionation and adapting the treatment plan to tumor volume changes in radiation therapy treatment. Adaptive radiation therapy (ART) is an iterative process to adjust the dose of radiation in response to potential changes during the treatment. One of the key challenges in ART is how to determine the optimal timing of adaptations corresponding to tumor response to radiation. This paper aims to develop an automated treatment planning framework incorporating the biological uncertainties to find the optimal adaptation points to achieve a more effective treatment plan. First, a dynamic tumor-response model is proposed to predict weekly tumor volume regression during the period of radiation therapy treatment based on biological factors. Second, a Reinforcement Learning (RL) framework is developed to find the optimal adaptation points for ART considering the uncertainty in biological factors with the goal of achieving maximum final tumor control while minimizing or maintaining the toxicity level of the organs at risk (OARs) per the decision-maker's preference. Third, a beamlet intensity optimization model is solved using the predicted tumor volume at each adaptation point. The performance of the proposed RT treatment planning framework is tested using a clinical non-small cell lung cancer (NSCLC) case. The results are compared with the conventional fractionation schedule (i.e., equal dose fractionation) as a reference plan. The results show that the proposed approach performed well in achieving a robust optimal ART treatment plan under high uncertainty in the biological parameters. The ART plan outperformed the reference plan by increasing the mean biological effective dose (BED) value of the tumor by 2.01%, while maintaining the OAR BED within +0.5% and reducing the variability, in terms of the interquartile range (IQR) of tumor BED, by 25%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落后凝莲完成签到,获得积分10
5秒前
追逐123完成签到 ,获得积分10
6秒前
江月年完成签到,获得积分10
8秒前
ding应助ST采纳,获得10
11秒前
属实有点拉胯完成签到 ,获得积分10
12秒前
18秒前
23秒前
许三问完成签到 ,获得积分0
23秒前
ST发布了新的文献求助10
23秒前
一一同学发布了新的文献求助30
26秒前
白小超人完成签到 ,获得积分10
30秒前
li发布了新的文献求助10
30秒前
MCRing完成签到,获得积分10
35秒前
学术小白完成签到,获得积分10
40秒前
科研通AI5应助满意的世界采纳,获得50
56秒前
hahhhah完成签到 ,获得积分10
56秒前
song完成签到 ,获得积分10
58秒前
开心绫发布了新的文献求助10
59秒前
Wind0240完成签到,获得积分10
1分钟前
Hung完成签到,获得积分10
1分钟前
一一同学完成签到,获得积分10
1分钟前
1分钟前
HY完成签到 ,获得积分10
1分钟前
Light完成签到,获得积分10
1分钟前
1分钟前
li完成签到,获得积分10
1分钟前
菠萝完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
1分钟前
菠萝发布了新的文献求助30
1分钟前
1分钟前
1分钟前
欣喜石头完成签到 ,获得积分10
1分钟前
大学生完成签到 ,获得积分10
1分钟前
吃饱再睡完成签到 ,获得积分10
1分钟前
魔幻安南完成签到 ,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965562
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155315
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176