A reinforcement learning approach for finding optimal policy of adaptive radiation therapy considering uncertain tumor biological response

计算机科学 强化学习 放射治疗 适应(眼睛) 地铁列车时刻表 放射治疗计划 适应性反应 人工智能 医学 生物 遗传学 操作系统 内科学 神经科学
作者
Saba Ebrahimi,Gino J. Lim
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:121: 102193-102193 被引量:16
标识
DOI:10.1016/j.artmed.2021.102193
摘要

Recent studies have shown that a tumor's biological response to radiation varies over time and has a dynamic nature. Dynamic biological features of tumor cells underscore the importance of using fractionation and adapting the treatment plan to tumor volume changes in radiation therapy treatment. Adaptive radiation therapy (ART) is an iterative process to adjust the dose of radiation in response to potential changes during the treatment. One of the key challenges in ART is how to determine the optimal timing of adaptations corresponding to tumor response to radiation. This paper aims to develop an automated treatment planning framework incorporating the biological uncertainties to find the optimal adaptation points to achieve a more effective treatment plan. First, a dynamic tumor-response model is proposed to predict weekly tumor volume regression during the period of radiation therapy treatment based on biological factors. Second, a Reinforcement Learning (RL) framework is developed to find the optimal adaptation points for ART considering the uncertainty in biological factors with the goal of achieving maximum final tumor control while minimizing or maintaining the toxicity level of the organs at risk (OARs) per the decision-maker's preference. Third, a beamlet intensity optimization model is solved using the predicted tumor volume at each adaptation point. The performance of the proposed RT treatment planning framework is tested using a clinical non-small cell lung cancer (NSCLC) case. The results are compared with the conventional fractionation schedule (i.e., equal dose fractionation) as a reference plan. The results show that the proposed approach performed well in achieving a robust optimal ART treatment plan under high uncertainty in the biological parameters. The ART plan outperformed the reference plan by increasing the mean biological effective dose (BED) value of the tumor by 2.01%, while maintaining the OAR BED within +0.5% and reducing the variability, in terms of the interquartile range (IQR) of tumor BED, by 25%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxm发布了新的文献求助10
刚刚
star应助舒适的皮卡丘采纳,获得10
刚刚
刚刚
Hello应助自觉水绿采纳,获得10
1秒前
1秒前
xl完成签到,获得积分10
3秒前
3秒前
yuan发布了新的文献求助10
3秒前
文静的柠檬完成签到,获得积分20
3秒前
臭臭完成签到,获得积分10
3秒前
tomjiwen完成签到 ,获得积分10
4秒前
FashionBoy应助伶俐凡白采纳,获得10
5秒前
6秒前
6秒前
CodeCraft应助黄婷萱采纳,获得10
6秒前
六元一斤虾完成签到 ,获得积分10
6秒前
勤奋傲云完成签到,获得积分10
6秒前
李健的小迷弟应助xl采纳,获得10
7秒前
酷波er应助董先生采纳,获得10
9秒前
霍笑寒完成签到,获得积分10
9秒前
Steven发布了新的文献求助50
9秒前
地平完成签到,获得积分10
9秒前
10秒前
从嘉发布了新的文献求助10
10秒前
11秒前
共享精神应助袁露采纳,获得30
11秒前
13秒前
科目三应助wgnahoa采纳,获得10
13秒前
14秒前
充电宝应助LI电池采纳,获得10
14秒前
认真搞科研啦完成签到,获得积分10
15秒前
退学炒股发布了新的文献求助10
15秒前
女爰舍予发布了新的文献求助10
15秒前
18秒前
ww发布了新的文献求助10
18秒前
汉堡王完成签到,获得积分10
20秒前
骜111完成签到,获得积分10
20秒前
20秒前
董先生发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307165
求助须知:如何正确求助?哪些是违规求助? 4452863
关于积分的说明 13855440
捐赠科研通 4340491
什么是DOI,文献DOI怎么找? 2383191
邀请新用户注册赠送积分活动 1378035
关于科研通互助平台的介绍 1345875