A reinforcement learning approach for finding optimal policy of adaptive radiation therapy considering uncertain tumor biological response

计算机科学 强化学习 放射治疗 适应(眼睛) 地铁列车时刻表 放射治疗计划 适应性反应 人工智能 医学 生物 遗传学 操作系统 内科学 神经科学
作者
Saba Ebrahimi,Gino J. Lim
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:121: 102193-102193 被引量:16
标识
DOI:10.1016/j.artmed.2021.102193
摘要

Recent studies have shown that a tumor's biological response to radiation varies over time and has a dynamic nature. Dynamic biological features of tumor cells underscore the importance of using fractionation and adapting the treatment plan to tumor volume changes in radiation therapy treatment. Adaptive radiation therapy (ART) is an iterative process to adjust the dose of radiation in response to potential changes during the treatment. One of the key challenges in ART is how to determine the optimal timing of adaptations corresponding to tumor response to radiation. This paper aims to develop an automated treatment planning framework incorporating the biological uncertainties to find the optimal adaptation points to achieve a more effective treatment plan. First, a dynamic tumor-response model is proposed to predict weekly tumor volume regression during the period of radiation therapy treatment based on biological factors. Second, a Reinforcement Learning (RL) framework is developed to find the optimal adaptation points for ART considering the uncertainty in biological factors with the goal of achieving maximum final tumor control while minimizing or maintaining the toxicity level of the organs at risk (OARs) per the decision-maker's preference. Third, a beamlet intensity optimization model is solved using the predicted tumor volume at each adaptation point. The performance of the proposed RT treatment planning framework is tested using a clinical non-small cell lung cancer (NSCLC) case. The results are compared with the conventional fractionation schedule (i.e., equal dose fractionation) as a reference plan. The results show that the proposed approach performed well in achieving a robust optimal ART treatment plan under high uncertainty in the biological parameters. The ART plan outperformed the reference plan by increasing the mean biological effective dose (BED) value of the tumor by 2.01%, while maintaining the OAR BED within +0.5% and reducing the variability, in terms of the interquartile range (IQR) of tumor BED, by 25%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助sunyanghu369采纳,获得10
刚刚
刚刚
2953685951发布了新的文献求助10
1秒前
李蕤蕤完成签到,获得积分10
1秒前
英姑应助wsgdhz采纳,获得10
1秒前
王小可发布了新的文献求助10
1秒前
务实的不二完成签到,获得积分10
1秒前
七七发布了新的文献求助30
2秒前
fvb发布了新的文献求助10
2秒前
ceo关闭了ceo文献求助
3秒前
3秒前
3秒前
3秒前
MZ完成签到,获得积分0
4秒前
wogua发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
充电宝应助DG采纳,获得10
5秒前
yydsyyd发布了新的文献求助50
5秒前
123发布了新的文献求助10
6秒前
7秒前
科研通AI5应助酷炫雨采纳,获得10
8秒前
非晚发布了新的文献求助10
8秒前
yin发布了新的文献求助10
8秒前
陶兜兜发布了新的文献求助10
9秒前
ding应助江柊采纳,获得10
9秒前
9秒前
clear发布了新的文献求助10
11秒前
和谐竺完成签到 ,获得积分10
11秒前
12秒前
喜欢玩辅助完成签到,获得积分10
12秒前
12秒前
嘎嘎乐发布了新的文献求助10
12秒前
12秒前
玖玖完成签到,获得积分10
13秒前
13秒前
13秒前
科研通AI5应助二柱子采纳,获得10
13秒前
贪玩火锅完成签到 ,获得积分10
15秒前
完美世界应助科研狗采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403