A New Coupled Method of SINS/DVL Integrated Navigation Based on Improved Dual Adaptive Factors

稳健性(进化) 离群值 惯性导航系统 计算机科学 控制理论(社会学) 惯性测量装置 水下 导航系统 实时计算 滤波器(信号处理) 计算机视觉 人工智能 惯性参考系 地质学 量子力学 基因 海洋学 物理 生物化学 化学 控制(管理)
作者
Shede Liu,Tao Zhang,Jiayu Zhang,Yeyu Zhu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-11 被引量:13
标识
DOI:10.1109/tim.2021.3106118
摘要

The integrated navigation of strap-down inertial navigation system (SINS) and Doppler velocity logs (DVL) has the common application in the positioning of autonomous underwater vehicle (AUV). However, DVL may be interrupted for a short time when part of the beam cannot receive the reflected signal and DVL measurement information is easily affected by underwater complex environment and contains outliers. To solve the above problems, a Doppler shifts aided coupled method of SINS/DVL integrated navigation with pare of DVL beam measurements outages based on dual adaptive factors is proposed. In this paper, a tightly coupled approach for SINS/DVL based on Doppler shifts is proposed to solve the short-term failure problem caused by the lack of part measurement in DVL. Then a chi-square detection aided dual factors adaptive filter is used to suppress the outliers. The dual factors are used to adjust the influence of imprecise information of dynamic model and observation model error. The chi-square detection is used to judge the outliers of measurements and the result of judgment is regarded as the precondition of factor selection. In order to verify the robustness of the proposed algorithm to outliers, simulation and Yangtze River experiments are carried out. The results of simulation and river experiments indicate that the tightly coupled approach obtain higher accuracy compared by the loosely coupled model and the proposed adaptive filter can effectively suppress the outliers. The method proposed in this paper can achieve greater robustness in AUV underwater complex environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
leeyc完成签到,获得积分10
1秒前
Lucky完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
大模型应助ark861023采纳,获得10
4秒前
4秒前
pure发布了新的文献求助10
5秒前
5秒前
5秒前
ybdx应助杏月小女子采纳,获得80
5秒前
balabala发布了新的文献求助10
5秒前
月倚樱落时完成签到,获得积分10
5秒前
璇22发布了新的文献求助10
6秒前
共享精神应助哈哈哈采纳,获得10
6秒前
羲月发布了新的文献求助10
7秒前
7秒前
7秒前
小蘑菇应助含蓄的灵煌采纳,获得10
7秒前
丘比特应助他们叫我小伟采纳,获得10
8秒前
zznzn发布了新的文献求助10
8秒前
超级尔白发布了新的文献求助10
8秒前
9秒前
9秒前
15136780701完成签到 ,获得积分10
9秒前
10秒前
36456657应助myt采纳,获得10
10秒前
shun完成签到,获得积分10
10秒前
elebug完成签到,获得积分10
11秒前
Oliver发布了新的文献求助10
11秒前
司马含卉给司马含卉的求助进行了留言
12秒前
泡芙完成签到 ,获得积分10
12秒前
付理想发布了新的文献求助10
13秒前
TerrellChow发布了新的文献求助10
13秒前
13秒前
13秒前
jlj完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557918
求助须知:如何正确求助?哪些是违规求助? 3132976
关于积分的说明 9400078
捐赠科研通 2833102
什么是DOI,文献DOI怎么找? 1557272
邀请新用户注册赠送积分活动 727153
科研通“疑难数据库(出版商)”最低求助积分说明 716197