清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Skeletal muscle mitochondrial network dynamics in metabolic disorders and aging

骨骼肌 生物 肌萎缩 胰岛素抵抗 线粒体 人口 生物信息学 疾病 内科学 内分泌学 医学 肥胖 遗传学 环境卫生
作者
Ciarán E. Fealy,Lotte Grevendonk,Joris Hoeks,Matthijs K.C. Hesselink
出处
期刊:Trends in Molecular Medicine [Elsevier]
卷期号:27 (11): 1033-1044 被引量:26
标识
DOI:10.1016/j.molmed.2021.07.013
摘要

Global demographics suggest an aging population, prompting concerns about an increase in the numbers of individuals with an age-associated loss of independence. Increasing adiposity is a risk factor for skeletal muscle insulin resistance, metabolic disease, and loss of skeletal muscle mass and function. Mitochondrial dynamics may be a therapeutic target for disorders of aging with an increasing number of studies suggest the presence of altered mitochondrial morphology in aging and obesity. Mitochondrial fragmentation is associated with metabolic disease development, while mitochondrial autophagy may be dysregulated in loss of muscle mass and strength. There remain significant gaps in the literature; however, the development of novel methodologies is facilitating a better understanding of mitochondrial network dynamics in age- and obesity- associated skeletal muscle dysfunction. With global demographics trending towards an aging population, the numbers of individuals with an age-associated loss of independence is increasing. A key contributing factor is loss of skeletal muscle mitochondrial, metabolic, and contractile function. Recent advances in imaging technologies have demonstrated the importance of mitochondrial morphology and dynamics in the pathogenesis of disease. In this review, we examine the evidence for altered mitochondrial dynamics as a mechanism in age and obesity-associated loss of skeletal muscle function, with a particular focus on the available human data. We highlight some of the areas where more data are needed to identify the specific mechanisms connecting mitochondrial morphology and skeletal muscle dysfunction. With global demographics trending towards an aging population, the numbers of individuals with an age-associated loss of independence is increasing. A key contributing factor is loss of skeletal muscle mitochondrial, metabolic, and contractile function. Recent advances in imaging technologies have demonstrated the importance of mitochondrial morphology and dynamics in the pathogenesis of disease. In this review, we examine the evidence for altered mitochondrial dynamics as a mechanism in age and obesity-associated loss of skeletal muscle function, with a particular focus on the available human data. We highlight some of the areas where more data are needed to identify the specific mechanisms connecting mitochondrial morphology and skeletal muscle dysfunction. programmed cell death. the process in which cellular contents are degraded by lysosomes or vacuoles and recycled. covers a variety of weight loss surgeries, including laparoscopic gastric banding surgery and Roux-en-Y gastric bypass (RYGB). a complex metabolic syndrome associated with underlying illness and characterized by loss of muscle with or without loss of fat mass. a surgical procedure that involves the placement of an adjustable belt around the upper portion of the stomach using a laparoscope. The belt limits the expansion of the stomach conferring increased satiety in the patient. the deleterious effects of lipid accumulation in non-adipose tissue. the division of a single mitochondrion into two or more independent structures. the physical merging of the outer and then the inner mitochondrial membranes of two originally distinct mitochondria. thin double-membrane protrusions that connect the matrices of non-adjacent mitochondria. the selective degradation of mitochondria by autophagy. oxygen-containing radicals such as the superoxide anion (O2-), hydrogen peroxide (H2O2), and the hydroxyl radical (HO•) that can be generated by aerobic metabolism. ROS may serve as cell signaling molecules for normal biological processes; however, excessive production of ROS can result in damage to multiple cellular organelles and processes. a surgical procedure that involves the creation of a small gastric pouch connected to a roux limb, which bypasses a large portion of the small intestine. This results in the food bypassing the majority of the stomach, the duodenum, and the first 40–50 cm of jejunum. the age-associated loss of muscle mass and strength. a metabolic disorder that results in hyperglycemia due to reduced effectiveness of the hormone insulin (insulin resistance) an inability of the pancreas to produce enough insulin to overcome insulin resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lorin完成签到 ,获得积分10
5秒前
13秒前
20秒前
44秒前
50秒前
55秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
老张完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
紫熊发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
谦也静熵完成签到,获得积分10
2分钟前
紫熊发布了新的文献求助20
2分钟前
2分钟前
2分钟前
方白秋完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
Richard完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
physicalproblem完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139610
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795348
捐赠科研通 2446958
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176