Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data

表型 生物 计算生物学 单细胞测序 遗传学 基因 外显子组测序
作者
Duanchen Sun,Xiangnan Guan,Amy E. Moran,Ling‐Yun Wu,David Z. Qian,Pepper Schedin,Mu‐Shui Dai,Alexey V. Danilov,Joshi J. Alumkal,Andrew Adey,Paul T. Spellman,Zheng Xia
出处
期刊:Nature Biotechnology [Nature Portfolio]
卷期号:40 (4): 527-538 被引量:261
标识
DOI:10.1038/s41587-021-01091-3
摘要

Bulk and single cell measurements are integrated to identify phenotype-associated subpopulations of cells. Single-cell RNA sequencing (scRNA-seq) distinguishes cell types, states and lineages within the context of heterogeneous tissues. However, current single-cell data cannot directly link cell clusters with specific phenotypes. Here we present Scissor, a method that identifies cell subpopulations from single-cell data that are associated with a given phenotype. Scissor integrates phenotype-associated bulk expression data and single-cell data by first quantifying the similarity between each single cell and each bulk sample. It then optimizes a regression model on the correlation matrix with the sample phenotype to identify relevant subpopulations. Applied to a lung cancer scRNA-seq dataset, Scissor identified subsets of cells associated with worse survival and with TP53 mutations. In melanoma, Scissor discerned a T cell subpopulation with low PDCD1/CTLA4 and high TCF7 expression associated with an immunotherapy response. Beyond cancer, Scissor was effective in interpreting facioscapulohumeral muscular dystrophy and Alzheimer’s disease datasets. Scissor identifies biologically and clinically relevant cell subpopulations from single-cell assays by leveraging phenotype and bulk-omics datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
扬之水发布了新的文献求助10
刚刚
1秒前
2秒前
min发布了新的文献求助10
3秒前
4秒前
科研通AI5应助菜菜子采纳,获得10
5秒前
sunyawen发布了新的文献求助10
6秒前
6秒前
朱洛尘完成签到 ,获得积分10
6秒前
Russell发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
nikonikoni发布了新的文献求助10
10秒前
SCIBUDDY完成签到,获得积分10
12秒前
ZYF发布了新的文献求助10
14秒前
薛吒发布了新的文献求助20
15秒前
哭泣青烟完成签到,获得积分10
16秒前
16秒前
16秒前
Jasper应助云青采纳,获得10
17秒前
17秒前
17秒前
18秒前
lxcy0612完成签到,获得积分10
18秒前
科研通AI5应助Russell采纳,获得10
18秒前
devil50506发布了新的文献求助10
19秒前
20秒前
哭泣青烟发布了新的文献求助10
20秒前
21秒前
22秒前
66666发布了新的文献求助10
23秒前
pluto应助小小鱼采纳,获得20
24秒前
隐形曼青应助YAFD采纳,获得10
24秒前
24秒前
nikonikoni完成签到,获得积分10
25秒前
菜菜子发布了新的文献求助10
25秒前
sangxue完成签到 ,获得积分10
27秒前
27秒前
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738248
求助须知:如何正确求助?哪些是违规求助? 3281724
关于积分的说明 10026477
捐赠科研通 2998622
什么是DOI,文献DOI怎么找? 1645291
邀请新用户注册赠送积分活动 782740
科研通“疑难数据库(出版商)”最低求助积分说明 749891