Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data

表型 细胞 生物 计算生物学 背景(考古学) 单细胞分析 电池类型 遗传学 基因 古生物学
作者
Duanchen Sun,Xiangnan Guan,Amy E. Moran,Ling‐Yun Wu,David Z. Qian,Pepper Schedin,Mu‐Shui Dai,Alexey V. Danilov,Joshi J. Alumkal,Andrew Adey,Paul T. Spellman,Zheng Xia
出处
期刊:Nature Biotechnology [Springer Nature]
卷期号:40 (4): 527-538 被引量:206
标识
DOI:10.1038/s41587-021-01091-3
摘要

Bulk and single cell measurements are integrated to identify phenotype-associated subpopulations of cells. Single-cell RNA sequencing (scRNA-seq) distinguishes cell types, states and lineages within the context of heterogeneous tissues. However, current single-cell data cannot directly link cell clusters with specific phenotypes. Here we present Scissor, a method that identifies cell subpopulations from single-cell data that are associated with a given phenotype. Scissor integrates phenotype-associated bulk expression data and single-cell data by first quantifying the similarity between each single cell and each bulk sample. It then optimizes a regression model on the correlation matrix with the sample phenotype to identify relevant subpopulations. Applied to a lung cancer scRNA-seq dataset, Scissor identified subsets of cells associated with worse survival and with TP53 mutations. In melanoma, Scissor discerned a T cell subpopulation with low PDCD1/CTLA4 and high TCF7 expression associated with an immunotherapy response. Beyond cancer, Scissor was effective in interpreting facioscapulohumeral muscular dystrophy and Alzheimer’s disease datasets. Scissor identifies biologically and clinically relevant cell subpopulations from single-cell assays by leveraging phenotype and bulk-omics datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薄荷小姐完成签到 ,获得积分10
刚刚
bkagyin应助闪闪妍采纳,获得10
1秒前
lxcy0612发布了新的文献求助10
2秒前
风枫叶发布了新的文献求助10
4秒前
tylscience发布了新的文献求助10
4秒前
科研小白完成签到,获得积分10
5秒前
5秒前
6秒前
LOVE17完成签到 ,获得积分10
6秒前
紧张的寻冬完成签到 ,获得积分10
6秒前
科研通AI2S应助冷酷哈密瓜采纳,获得10
7秒前
8秒前
8秒前
8秒前
Hello应助王冉冉采纳,获得10
9秒前
10秒前
elgar612发布了新的文献求助10
10秒前
11秒前
向北完成签到,获得积分10
11秒前
11秒前
moule发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
Singularity应助科研通管家采纳,获得20
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
甜甜玫瑰应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
满意白卉发布了新的文献求助30
14秒前
嘻鱼徐完成签到,获得积分10
14秒前
共享精神应助cyy采纳,获得10
14秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138804
求助须知:如何正确求助?哪些是违规求助? 2789745
关于积分的说明 7792532
捐赠科研通 2446127
什么是DOI,文献DOI怎么找? 1300876
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079