已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Selective identification and localization of indolent and aggressive prostate cancers via CorrSigNIA: an MRI-pathology correlation and deep learning framework

前列腺切除术 前列腺癌 医学 前列腺 磁共振成像 活检 放射科 组织病理学 癌症 病理 内科学
作者
Indrani Bhattacharya,Arun Seetharaman,Christian A. Kunder,Wei Shao,Leo C. Chen,Simon John Christoph Soerensen,Jeffrey B. Wang,Nikola C. Teslovich,Richard E. Fan,Pejman Ghanouni,James D. Brooks,Geoffrey A. Sonn,Mirabela Rusu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:75: 102288-102288 被引量:43
标识
DOI:10.1016/j.media.2021.102288
摘要

Automated methods for detecting prostate cancer and distinguishing indolent from aggressive disease on Magnetic Resonance Imaging (MRI) could assist in early diagnosis and treatment planning. Existing automated methods of prostate cancer detection mostly rely on ground truth labels with limited accuracy, ignore disease pathology characteristics observed on resected tissue, and cannot selectively identify aggressive (Gleason Pattern≥4) and indolent (Gleason Pattern=3) cancers when they co-exist in mixed lesions. In this paper, we present a radiology-pathology fusion approach, CorrSigNIA, for the selective identification and localization of indolent and aggressive prostate cancer on MRI. CorrSigNIA uses registered MRI and whole-mount histopathology images from radical prostatectomy patients to derive accurate ground truth labels and learn correlated features between radiology and pathology images. These correlated features are then used in a convolutional neural network architecture to detect and localize normal tissue, indolent cancer, and aggressive cancer on prostate MRI. CorrSigNIA was trained and validated on a dataset of 98 men, including 74 men that underwent radical prostatectomy and 24 men with normal prostate MRI. CorrSigNIA was tested on three independent test sets including 55 men that underwent radical prostatectomy, 275 men that underwent targeted biopsies, and 15 men with normal prostate MRI. CorrSigNIA achieved an accuracy of 80% in distinguishing between men with and without cancer, a lesion-level ROC-AUC of 0.81±0.31 in detecting cancers in both radical prostatectomy and biopsy cohort patients, and lesion-levels ROC-AUCs of 0.82±0.31 and 0.86±0.26 in detecting clinically significant cancers in radical prostatectomy and biopsy cohort patients respectively. CorrSigNIA consistently outperformed other methods across different evaluation metrics and cohorts. In clinical settings, CorrSigNIA may be used in prostate cancer detection as well as in selective identification of indolent and aggressive components of prostate cancer, thereby improving prostate cancer care by helping guide targeted biopsies, reducing unnecessary biopsies, and selecting and planning treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小林同学0219完成签到 ,获得积分10
1秒前
桂源发布了新的文献求助30
2秒前
8秒前
subat完成签到 ,获得积分10
9秒前
科研人完成签到 ,获得积分10
11秒前
平淡的毛衣完成签到,获得积分20
11秒前
陈三三发布了新的文献求助10
14秒前
Dr.Wei完成签到,获得积分10
18秒前
积极的尔岚完成签到 ,获得积分10
25秒前
25秒前
吉势甘完成签到 ,获得积分10
30秒前
32秒前
Nefelibata完成签到,获得积分10
34秒前
35秒前
今后应助孤独太清采纳,获得10
36秒前
汉堡包应助文在否采纳,获得10
38秒前
mmz完成签到 ,获得积分10
40秒前
42秒前
气泡水完成签到 ,获得积分10
43秒前
俊逸夜阑完成签到,获得积分10
44秒前
52秒前
Limerencia完成签到,获得积分10
52秒前
丸子完成签到 ,获得积分10
52秒前
yuki完成签到 ,获得积分10
53秒前
56秒前
文在否发布了新的文献求助10
57秒前
58秒前
章依瑶发布了新的文献求助10
1分钟前
852应助陈三三采纳,获得10
1分钟前
bkagyin应助LuoYixiang采纳,获得10
1分钟前
自由的无色完成签到 ,获得积分10
1分钟前
震动的问寒完成签到,获得积分20
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
cocolu应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
眼睛大的傲菡完成签到,获得积分10
1分钟前
1分钟前
三千年的成长完成签到 ,获得积分10
1分钟前
LuoYixiang发布了新的文献求助10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3322510
求助须知:如何正确求助?哪些是违规求助? 2953852
关于积分的说明 8567004
捐赠科研通 2631396
什么是DOI,文献DOI怎么找? 1439835
科研通“疑难数据库(出版商)”最低求助积分说明 667250
邀请新用户注册赠送积分活动 653711