Development of Protein-Specific Analytical Methodologies to Evaluate Compatibility of Recombinant Human (rh)IGF-1/rhIGFBP-3 with Intravenous Medications Co-Administered to Neonates
色谱法
化学
检出限
重组DNA
高效液相色谱法
药理学
医学
生物化学
基因
作者
Nazila Salamat‐Miller,Wanlu Qu,Jennifer S. Chadwick,Christopher McPherson,Paul A. Salinas,Mark Turner,Dongdong Wang,Norman Barton
The protein complex of recombinant human insulin-like growth factor-1 and insulin‑like growth factor binding protein‑3 (rhIGF-1/rhIGFBP-3; mecasermin rinfabate), is an investigational product for the prevention of complications of prematurity. Delivery of rhIGF-1/rhIGFBP-3 is by continuous central line intravenous infusion in preterm infants until endogenous IGF-1 production begins. Protein-specific analytical methodologies were developed to evaluate the compatibility of rhIGF-1/rhIGFBP-3 at low protein concentrations (∼2.5-10 μg/mL) expected when co-administered with other required medications in the NICU. Highly sensitive detection of the biologic potential degradants (fragments) and/or molecular modifications (oxidized species, aggregates) required the use of reversed-phase high-performance liquid chromatography and size-exclusion ultra-performance liquid chromatography coupled with mass spectrometric detection. We report on the quantification of rhIGF-1/rhIGFBP-3, its components and degradants, to a limit of quantitation of 3.1 μg/mL upon mixing with 24 commonly administered neonatal medications. Methods developed for the rhIGF-1/rhIGFBP-3 admixtures, optimized in studies with furosemide, caffeine citrate and ampicillin, demonstrated good reproducibility, linearity, and limit of detection/quantitation. Using these methods, no increase in degradation of rhIGF-1/rhIGFBP-3 components and no increase in oxidation or aggregation level was observed with caffeine citrate, while admixtures of rhIGF-1/rhIGFBP-3 with ampicillin yielded lower mass recovery of rhIGF-1/rhIGFBP-3 components, which likely resulted from adduct formation. Furosemide was found to be physically incompatible with rhIGF-1/rhIGFBP-3. Our findings support the use of these methodologies for detection of protein modifications under various clinical administration conditions, and additionally supplement physical compatibility data studies of ultra-low concentrations of rhIGF-1/rhIGFBP-3 post co-administration to preterm infants with other medications (manuscript in-preparation).