Vision Transformer‐based recognition of diabetic retinopathy grade

Softmax函数 计算机科学 人工智能 卷积神经网络 变压器 模式识别(心理学) 深度学习 预处理器 糖尿病性视网膜病变 计算机视觉 工程类 电压 医学 电气工程 内分泌学 糖尿病
作者
Jianfang Wu,Ruo Hu,Zhenghong Xiao,Jiaxu Chen,Jing-Wei Liu
出处
期刊:Medical Physics [Wiley]
卷期号:48 (12): 7850-7863 被引量:62
标识
DOI:10.1002/mp.15312
摘要

In the domain of natural language processing, Transformers are recognized as state-of-the-art models, which opposing to typical convolutional neural networks (CNNs) do not rely on convolution layers. Instead, Transformers employ multi-head attention mechanisms as the main building block to capture long-range contextual relations between image pixels. Recently, CNNs dominated the deep learning solutions for diabetic retinopathy grade recognition. However, spurred by the advantages of Transformers, we propose a Transformer-based method that is appropriate for recognizing the grade of diabetic retinopathy.The purposes of this work are to demonstrate that (i) the pure attention mechanism is suitable for diabetic retinopathy grade recognition and (ii) Transformers can replace traditional CNNs for diabetic retinopathy grade recognition.This paper proposes a Vision Transformer-based method to recognize the grade of diabetic retinopathy. Fundus images are subdivided into non-overlapping patches, which are then converted into sequences by flattening, and undergo a linear and positional embedding process to preserve positional information. Then, the generated sequence is input into several multi-head attention layers to generate the final representation. The first token sequence is input to a softmax classification layer to produce the recognition output in the classification stage.The dataset for training and testing employs fundus images of different resolutions, subdivided into patches. We challenge our method against current CNNs and extreme learning machines and achieve an appealing performance. Specifically, the suggested deep learning architecture attains an accuracy of 91.4%, specificity = 0.977 (95% confidence interval (CI) (0.951-1)), precision = 0.928 (95% CI (0.852-1)), sensitivity = 0.926 (95% CI (0.863-0.989)), quadratic weighted kappa score = 0.935, and area under curve (AUC) = 0.986.Our comparative experiments against current methods conclude that our model is competitive and highlight that an attention mechanism based on a Vision Transformer model is promising for the diabetic retinopathy grade recognition task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小羊发布了新的文献求助10
刚刚
贪玩的刚发布了新的文献求助10
1秒前
1秒前
tttt发布了新的文献求助10
1秒前
cxxxx应助端庄的墨镜采纳,获得10
1秒前
机智大有完成签到,获得积分10
3秒前
3秒前
1391451653完成签到,获得积分10
3秒前
3秒前
哈哈哩哩啦完成签到 ,获得积分10
4秒前
从容甜瓜发布了新的文献求助10
5秒前
高贵紫槐完成签到,获得积分10
6秒前
6秒前
VV发布了新的文献求助10
6秒前
tttt完成签到,获得积分20
7秒前
无端完成签到,获得积分10
8秒前
大个应助睡醒的尾椎骨采纳,获得10
9秒前
花痴的梦蕊完成签到,获得积分10
9秒前
调皮翠霜发布了新的文献求助10
9秒前
shinysparrow应助羊羽采纳,获得200
10秒前
悦耳的扬完成签到,获得积分20
11秒前
11秒前
英俊的鱼完成签到,获得积分10
13秒前
14秒前
coasting发布了新的文献求助10
15秒前
脑洞疼应助清溪浅水XZ采纳,获得10
15秒前
科研小狗发布了新的文献求助10
15秒前
16秒前
C2H5MgBr完成签到,获得积分10
17秒前
17秒前
17秒前
白小白完成签到,获得积分10
17秒前
天蔚蓝完成签到,获得积分10
17秒前
辞暮发布了新的文献求助10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
852应助科研通管家采纳,获得10
20秒前
Ava应助科研通管家采纳,获得10
20秒前
慕青应助科研通管家采纳,获得150
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145912
求助须知:如何正确求助?哪些是违规求助? 2797359
关于积分的说明 7823805
捐赠科研通 2453697
什么是DOI,文献DOI怎么找? 1305818
科研通“疑难数据库(出版商)”最低求助积分说明 627574
版权声明 601491