Design. Fabrication, and Test of an Embedded Si-Glass Microchannel Heat Sink for High-power RF Application

散热片 材料科学 微通道 热导率 散热膏 计算机冷却 热阻 薄脆饼 制作 机械工程 热撒布器 传热 复合材料 光电子学 机械 工程类 电子设备和系统的热管理 纳米技术 病理 物理 医学 替代医学
作者
Jianyu Du,Weihao Li,Xu Gao,Deyin Zheng,Yu‐Chi Yang,Zetian Wang,Haoran Zhao,Jiajie Kang,Wei Wang
标识
DOI:10.1109/icept52650.2021.9568212
摘要

The heat dissipation of power amplifier (PA) chips is one of the biggest challenges in the development of miniaturized state of art glass-based high-power RF modules. Glass has excellent electrical properties, but the extremely poor thermal conductivity of it also brings many barriers in the application. Its (quartz glass) thermal conductivity is only 1/93 of that of silicon, so there will be a problem of poor heat dissipation. In recent years, there has been an increasing amount of literature on microfluidic cooling technology and this method was demonstrate as an efficient way in cooling application. In this article, we designed, fabricated, and tested a Si-Glass microchannel heat sink, which took advantage of the high thermal conductivity of silicon to deal with the insufficient thermal conductivity of the glass interposer. Finite element simulation was used to study the thermal property of the Si-Glass heat sink and a multi-parameter optimal method was used to design the geometrical parameters, including the number of flow channels and other geometrical parameters of the heat sink. Then the aforementioned microchannel heat sinks were fabricated using cleanroom fabrication on 4-inch silicon and glass wafers. To complete the thermal test, the Thermal Demonstration Vehicles (TDVs) were fabricated by bonding the sample onto a customized PDMS holder for fluid connections with the flow loop. A programmable power source was used to heat the TDV in a stepwise manner, and a syringe pump was used to supply the liquid to cool the heat sink. Results show that the heat sink can dissipate heat flux greater than 150W/cm 2 with substrate temperature lower than 100°C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔若完成签到,获得积分10
刚刚
称心的问薇完成签到,获得积分10
1秒前
1秒前
高兴的半凡完成签到 ,获得积分10
2秒前
123完成签到,获得积分10
2秒前
Answer完成签到,获得积分10
2秒前
诚心凝旋发布了新的文献求助10
2秒前
孟柠柠完成签到,获得积分10
3秒前
3秒前
哈哈哈发布了新的文献求助10
3秒前
SYLH应助di采纳,获得10
4秒前
韭菜盒子完成签到,获得积分20
4秒前
4秒前
5秒前
饭小心发布了新的文献求助10
5秒前
tanjianxin完成签到,获得积分10
5秒前
wanci应助帅玉玉采纳,获得10
5秒前
Ellie完成签到 ,获得积分10
5秒前
晴天完成签到 ,获得积分10
6秒前
123完成签到,获得积分10
6秒前
6秒前
EOFG0PW发布了新的文献求助10
7秒前
buno应助yug采纳,获得10
7秒前
hgh完成签到,获得积分10
7秒前
001关闭了001文献求助
8秒前
研友_VZG7GZ应助Fareth采纳,获得10
8秒前
9秒前
韭菜盒子发布了新的文献求助10
9秒前
9秒前
大意的安白完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
学术蟑螂完成签到,获得积分10
10秒前
10秒前
10秒前
兴奋冷松完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740