Design. Fabrication, and Test of an Embedded Si-Glass Microchannel Heat Sink for High-power RF Application

散热片 材料科学 微通道 热导率 散热膏 计算机冷却 热阻 薄脆饼 制作 机械工程 热撒布器 传热 复合材料 光电子学 机械 工程类 电子设备和系统的热管理 纳米技术 医学 物理 替代医学 病理
作者
Jianyu Du,Weihao Li,Xu Gao,Deyin Zheng,Yu‐Chi Yang,Zetian Wang,Haoran Zhao,Jiajie Kang,Wei Wang
标识
DOI:10.1109/icept52650.2021.9568212
摘要

The heat dissipation of power amplifier (PA) chips is one of the biggest challenges in the development of miniaturized state of art glass-based high-power RF modules. Glass has excellent electrical properties, but the extremely poor thermal conductivity of it also brings many barriers in the application. Its (quartz glass) thermal conductivity is only 1/93 of that of silicon, so there will be a problem of poor heat dissipation. In recent years, there has been an increasing amount of literature on microfluidic cooling technology and this method was demonstrate as an efficient way in cooling application. In this article, we designed, fabricated, and tested a Si-Glass microchannel heat sink, which took advantage of the high thermal conductivity of silicon to deal with the insufficient thermal conductivity of the glass interposer. Finite element simulation was used to study the thermal property of the Si-Glass heat sink and a multi-parameter optimal method was used to design the geometrical parameters, including the number of flow channels and other geometrical parameters of the heat sink. Then the aforementioned microchannel heat sinks were fabricated using cleanroom fabrication on 4-inch silicon and glass wafers. To complete the thermal test, the Thermal Demonstration Vehicles (TDVs) were fabricated by bonding the sample onto a customized PDMS holder for fluid connections with the flow loop. A programmable power source was used to heat the TDV in a stepwise manner, and a syringe pump was used to supply the liquid to cool the heat sink. Results show that the heat sink can dissipate heat flux greater than 150W/cm 2 with substrate temperature lower than 100°C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助邵翎365采纳,获得10
刚刚
醉翁完成签到,获得积分10
1秒前
1秒前
BPX发布了新的文献求助10
1秒前
1秒前
吕布完成签到,获得积分10
1秒前
SciGPT应助积极的新柔采纳,获得10
3秒前
3秒前
李健的小迷弟应助hyman采纳,获得10
4秒前
ding应助成就凌兰采纳,获得10
5秒前
情怀应助人间惊鸿采纳,获得10
5秒前
6秒前
zhf发布了新的文献求助10
6秒前
shanshan发布了新的文献求助10
6秒前
一区作者完成签到,获得积分10
7秒前
Waoo发布了新的文献求助30
8秒前
上官若男应助Miracle采纳,获得10
9秒前
怪胎完成签到,获得积分10
9秒前
司徒文青应助ll采纳,获得30
10秒前
彭于晏应助1205114938采纳,获得10
10秒前
端庄白猫完成签到,获得积分10
10秒前
11秒前
12秒前
14秒前
Adler应助端庄白猫采纳,获得10
16秒前
马大翔应助护理小白采纳,获得20
16秒前
zhf完成签到,获得积分10
16秒前
今后应助BPX采纳,获得10
17秒前
大巧若拙发布了新的文献求助10
18秒前
糊涂涂发布了新的文献求助10
18秒前
18秒前
winwin完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
情怀应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得20
20秒前
完美世界应助罗mian采纳,获得10
20秒前
朱珠贝完成签到,获得积分10
21秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123020
求助须知:如何正确求助?哪些是违规求助? 2773567
关于积分的说明 7718302
捐赠科研通 2429164
什么是DOI,文献DOI怎么找? 1290167
科研通“疑难数据库(出版商)”最低求助积分说明 621736
版权声明 600220