电解质
化学
电化学
法拉第效率
阴极
氧化物
电子顺磁共振
反应性(心理学)
离子
无机化学
氧气
电极
物理化学
核磁共振
有机化学
病理
物理
替代医学
医学
作者
Chong Zhao,Chao Li,Hui Liu,Qing Qiu,Fushan Geng,Ming Shen,Wei Tong,Jingxin Li,Bingwen Hu
摘要
The interface stability of cathode/electrolyte for Na-ion layered oxides is tightly related to the oxidized species formed during the electrochemical process. Herein, we for the first time decipher the coexistence of (O2)n- and trapped molecular O2 in the (de)sodiation process of P2-Na0.66[Li0.22Mn0.78]O2 by using advanced electron paramagnetic resonance (EPR) spectroscopy. An unstable interface of cathode/electrolyte can thus be envisaged with conventional carbonate electrolyte due to the high reactivity of the oxidized O species. We therefore introduce a highly fluorinated electrolyte to tentatively construct a stable and protective interface between P2-Na0.66[Li0.22Mn0.78]O2 and the electrolyte. As expected, an even and robust NaF-rich cathode-electrolyte interphase (CEI) film is formed in the highly fluorinated electrolyte, in sharp contrast to the nonuniform and friable organic-rich CEI formed in the conventional lowly fluorinated electrolyte. The in situ formed fluorinated CEI film can significantly mitigate the local structural degeneration of P2-Na0.66[Li0.22Mn0.78]O2 by refraining the irreversible Li/Mn dissolutions and O2 release, endowing a highly reversible oxygen redox reaction. Resultantly, P2-Na0.66[Li0.22Mn0.78]O2 in highly fluorinated electrolyte achieves a high Coulombic efficiency (CE) of >99% and an impressive cycling stability in the voltage range of 2.0-4.5 V (vs Na+/Na) under room temperature (147.6 mAh g-1, 100 cycles) and at 45 °C (142.5 mAh g-1, 100 cycles). This study highlights the profound impact of oxidized oxygen species on the interfacial stability of cathode/electrolyte and carves a new path for building stable interface and enabling highly stable oxygen redox reaction.
科研通智能强力驱动
Strongly Powered by AbleSci AI