已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

HFRU-Net: High-Level Feature Fusion and Recalibration UNet for Automatic Liver and Tumor Segmentation in CT Images

计算机科学 人工智能 分割 特征(语言学) 棱锥(几何) 卷积神经网络 模式识别(心理学) 深度学习 医学影像学 肝肿瘤 计算机视觉 医学 肝细胞癌 癌症研究 哲学 物理 光学 语言学
作者
Devidas T. Kushnure,Sanjay N. Talbar
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:213: 106501-106501 被引量:35
标识
DOI:10.1016/j.cmpb.2021.106501
摘要

Automatic liver and tumor segmentation are essential steps to take decisive action in hepatic disease detection, deciding therapeutic planning, and post-treatment assessment. The computed tomography (CT) scan has become the choice of medical experts to diagnose hepatic anomalies. However, due to advancements in CT image acquisition protocol, CT scan data is growing and manual delineation of the liver and tumor from the CT volume becomes cumbersome and tedious for medical experts. Thus, the outcome becomes highly reliant on the operator's proficiency. Further, automatic liver and tumor segmentation from CT images is challenging due to complicated parenchyma, highly variable shape, and fewer voxel intensity variation among the liver, tumor, neighbouring organs, and discontinuity in liver boundaries. Recently deep learning (DL) exhibited extraordinary potential in medical image interpretation. Because of its effectiveness in performance advancement, the DL-based convolutional neural networks (CNN) gained significant interest in the medical realm. The proposed HFRU-Net is derived from the UNet architecture by modifying the skip pathways using local feature reconstruction and feature fusion mechanism that represents the detailed contextual information in the high-level features. Further, the fused features are adaptively recalibrated by learning the channel-wise interdependencies to acquire the prominent details of the modified high-level features using the squeeze-and-Excitation network (SENet). Also, in the bottleneck layer, we employed the atrous spatial pyramid pooling (ASPP) module to represent the multiscale features with dissimilar receptive fields to represent the rich spatial information in the low-level features. These amendments uplift the segmentation performance and reduce the computational complexity of the model than outperforming methods. The efficacy of the proposed model is proved by widespread experimentation on two datasets available publicly (LiTS and 3DIrcadb). The experimental result analysis illustrates that the proposed model has attained a dice similarity coefficient of 0.966 and 0.972 for liver segmentation and 0.771 and 0.776 for liver tumor segmentation on LiTS and the 3DIRCADb dataset. Further, the robustness of the HFRU-Net is confirmed on the independent LiTS challenge test dataset. The proposed model attained the global dice of 95.0% for liver segmentation and 61.4% for tumor segmentation which is comparable with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Darcy完成签到,获得积分10
刚刚
乐乐乐乐乐乐应助年鱼精采纳,获得10
5秒前
7秒前
惘然完成签到 ,获得积分10
11秒前
jerry完成签到,获得积分10
11秒前
14秒前
14秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
竹筏过海应助科研通管家采纳,获得30
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
18秒前
英姑应助科研通管家采纳,获得10
18秒前
18秒前
彭于晏应助和谐悲采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
m1nt完成签到,获得积分10
18秒前
苏打发布了新的文献求助30
19秒前
im红牛完成签到 ,获得积分10
19秒前
晾猫人发布了新的文献求助10
20秒前
WZQ完成签到,获得积分20
20秒前
我住隔壁我姓王完成签到,获得积分10
20秒前
Jenny发布了新的文献求助10
20秒前
忧郁的寻冬完成签到,获得积分10
20秒前
文欣完成签到 ,获得积分10
22秒前
23秒前
晾猫人完成签到,获得积分10
26秒前
迪克bin完成签到,获得积分20
26秒前
边曦完成签到 ,获得积分10
26秒前
28秒前
酷酷涫完成签到 ,获得积分0
28秒前
wanci应助meng采纳,获得30
29秒前
喜宝完成签到 ,获得积分10
29秒前
爱听歌的寄云完成签到 ,获得积分10
30秒前
安详向薇完成签到,获得积分10
30秒前
苏打完成签到,获得积分20
31秒前
大力蚂蚁完成签到 ,获得积分10
33秒前
shinysparrow完成签到,获得积分0
33秒前
汪洋浮萍一道开完成签到,获得积分10
35秒前
缪甲烷完成签到,获得积分10
36秒前
mouduan完成签到 ,获得积分10
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136964
求助须知:如何正确求助?哪些是违规求助? 2787896
关于积分的说明 7783885
捐赠科研通 2443962
什么是DOI,文献DOI怎么找? 1299536
科研通“疑难数据库(出版商)”最低求助积分说明 625477
版权声明 600954