HFRU-Net: High-Level Feature Fusion and Recalibration UNet for Automatic Liver and Tumor Segmentation in CT Images

计算机科学 人工智能 分割 特征(语言学) 棱锥(几何) 卷积神经网络 模式识别(心理学) 深度学习 医学影像学 肝肿瘤 计算机视觉 医学 肝细胞癌 癌症研究 哲学 物理 光学 语言学
作者
Devidas T. Kushnure,Sanjay N. Talbar
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:213: 106501-106501 被引量:50
标识
DOI:10.1016/j.cmpb.2021.106501
摘要

Automatic liver and tumor segmentation are essential steps to take decisive action in hepatic disease detection, deciding therapeutic planning, and post-treatment assessment. The computed tomography (CT) scan has become the choice of medical experts to diagnose hepatic anomalies. However, due to advancements in CT image acquisition protocol, CT scan data is growing and manual delineation of the liver and tumor from the CT volume becomes cumbersome and tedious for medical experts. Thus, the outcome becomes highly reliant on the operator's proficiency. Further, automatic liver and tumor segmentation from CT images is challenging due to complicated parenchyma, highly variable shape, and fewer voxel intensity variation among the liver, tumor, neighbouring organs, and discontinuity in liver boundaries. Recently deep learning (DL) exhibited extraordinary potential in medical image interpretation. Because of its effectiveness in performance advancement, the DL-based convolutional neural networks (CNN) gained significant interest in the medical realm. The proposed HFRU-Net is derived from the UNet architecture by modifying the skip pathways using local feature reconstruction and feature fusion mechanism that represents the detailed contextual information in the high-level features. Further, the fused features are adaptively recalibrated by learning the channel-wise interdependencies to acquire the prominent details of the modified high-level features using the squeeze-and-Excitation network (SENet). Also, in the bottleneck layer, we employed the atrous spatial pyramid pooling (ASPP) module to represent the multiscale features with dissimilar receptive fields to represent the rich spatial information in the low-level features. These amendments uplift the segmentation performance and reduce the computational complexity of the model than outperforming methods. The efficacy of the proposed model is proved by widespread experimentation on two datasets available publicly (LiTS and 3DIrcadb). The experimental result analysis illustrates that the proposed model has attained a dice similarity coefficient of 0.966 and 0.972 for liver segmentation and 0.771 and 0.776 for liver tumor segmentation on LiTS and the 3DIRCADb dataset. Further, the robustness of the HFRU-Net is confirmed on the independent LiTS challenge test dataset. The proposed model attained the global dice of 95.0% for liver segmentation and 61.4% for tumor segmentation which is comparable with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
5秒前
6666发布了新的文献求助10
7秒前
无限雨南发布了新的文献求助10
7秒前
EgoElysia完成签到,获得积分10
7秒前
敏感雅香发布了新的文献求助10
8秒前
归尘发布了新的文献求助150
9秒前
zumri发布了新的文献求助10
9秒前
jia完成签到,获得积分10
11秒前
12秒前
12秒前
hino发布了新的文献求助10
12秒前
共享精神应助6666采纳,获得10
14秒前
shower_009完成签到,获得积分10
15秒前
17秒前
在水一方应助哈哈采纳,获得10
18秒前
18秒前
纯真追命完成签到 ,获得积分10
18秒前
18秒前
19秒前
咚咚锵完成签到,获得积分10
19秒前
19秒前
包容的琦发布了新的文献求助30
22秒前
梦里繁花发布了新的文献求助10
22秒前
Wang完成签到,获得积分10
24秒前
weilanhaian完成签到,获得积分10
24秒前
25秒前
蒋雪琴完成签到 ,获得积分10
25秒前
wjw发布了新的文献求助10
26秒前
27秒前
FashionBoy应助聪慧的正豪采纳,获得10
28秒前
28秒前
李长印发布了新的文献求助10
29秒前
29秒前
weilanhaian发布了新的文献求助10
30秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035