Associations of multiple metals with bone mineral density: A population-based study in US adults

骨矿物 全国健康与营养检查调查 电感耦合等离子体质谱法 百分位 线性回归 人口 体质指数 Mercury(编程语言) 环境化学 环境卫生 动物科学 化学 质谱法 医学 骨质疏松症 内分泌学 色谱法 数学 统计 有机化学 程序设计语言 生物 计算机科学 机器学习
作者
Muhong Wei,Yuan Cui,Hao‐Long Zhou,Wenjing Song,Dongsheng Di,Ruyi Zhang,Qin Huang,Junan Liu,Qi Wang
出处
期刊:Chemosphere [Elsevier]
卷期号:282: 131150-131150 被引量:34
标识
DOI:10.1016/j.chemosphere.2021.131150
摘要

Epidemiologic studies focus on combined effects of multiple metals on bone mineral density (BMD) are scarce. Therefore, this study was conducted to examine associations of multiple metals exposure with BMD. Data of adults aged ≥20 years (n = 2545) from the US National Health and Nutrition Examination Survey (NHANES, 2011–2016) were collected and analyzed. Concentrations of metals were measured in blood (cadmium [Cd], lead [Pb], mercury [Hg], and manganese [Mn]) and serum (copper [Cu], selenium [Se], and zinc [Zn]) using inductively coupled plasma mass spectrometry and inductively coupled plasma dynamic reaction cell mass spectrometry, respectively. The weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) models were performed to determine the joint effects of multiple metals exposure on lumbar and total BMD. The linear regression analyses showed Pb was negatively associated with BMDs. The WQS regression analyses revealed that the WQS index was inversely related to lumbar (β = −0.022, 95% CI: −0.036, −0.008) and total BMD (β = −0.015, 95% CI: −0.024, −0.006), and Se, Mn, and Pb were the main contributors for the combined effects. Additionally, nonlinear dose–response relationships between Pb, Mn, and Se and BMD, as well as a synergistic interaction of Pb and Mn, were found in the BKMR analyses. Our findings suggested co-exposure to Cd, Pb, Hg, Mn, Cu, Se, and Zn (above their 50th percentiles) was associated with reduced BMD, and Pb, Mn, and Se were the main contributors driving the overall effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助BaekHyun采纳,获得10
1秒前
peng发布了新的文献求助10
1秒前
1秒前
2秒前
科研通AI5应助孔小白采纳,获得10
3秒前
3秒前
舒适逊完成签到 ,获得积分10
3秒前
科研通AI5应助11111采纳,获得10
4秒前
CipherSage应助hxn采纳,获得10
4秒前
6秒前
深情安青应助shatang采纳,获得10
6秒前
zxx5012发布了新的文献求助10
6秒前
芥丶子完成签到,获得积分10
7秒前
曾开心完成签到,获得积分10
7秒前
平淡南霜发布了新的文献求助10
7秒前
Blue_Pig发布了新的文献求助10
8秒前
李健的小迷弟应助逐风采纳,获得30
8秒前
yatou5651发布了新的文献求助10
9秒前
Akim应助和谐乌龟采纳,获得10
9秒前
peng完成签到,获得积分20
10秒前
CipherSage应助汉关采纳,获得10
10秒前
11秒前
11秒前
11秒前
丘比特应助XM采纳,获得10
11秒前
bkagyin应助Blue_Pig采纳,获得10
12秒前
13秒前
14秒前
14秒前
完美世界应助加油加油采纳,获得10
15秒前
15秒前
16秒前
ns发布了新的文献求助30
18秒前
11111发布了新的文献求助10
18秒前
19秒前
药学牛马完成签到,获得积分10
19秒前
张zi发布了新的文献求助10
20秒前
yatou5651发布了新的文献求助10
21秒前
21秒前
小魏不学无术完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808