Reducing the Impact of External Vibrations on Fiducial Point Detection in Seismocardiogram Signals

信号(编程语言) 希尔伯特-黄变换 计算机科学 人工智能 特征提取 语音识别 计算机视觉 模式识别(心理学) 白噪声 电信 程序设计语言
作者
David J. Lin,Jacob Kimball,Jonathan Zia,Venu G. Ganti,Omer T. Inan
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:69 (1): 176-185 被引量:24
标识
DOI:10.1109/tbme.2021.3090376
摘要

Objective: Wearable systems that enable continuous non-invasive monitoring of hemodynamic parameters can aid in cardiac health evaluation in non-hospital settings. The seismocardiogram (SCG) is a non-invasively acquired cardiovascular biosignal for which timings of fiducial points, like aortic valve opening (AO) and aortic valve closing (AC), can enable estimation of key hemodynamic parameters. However, SCG is susceptible to motion artifacts, making accurate estimation of these points difficult when corrupted by high-g or in-band vibration artifacts. In this paper, a novel denoising pipeline is proposed that removes vehicle-vibration artifacts from corrupted SCG beats for accurate fiducial point detection. Methods: The noisy SCG signal is decomposed with ensemble empirical mode decomposition (EEMD). Corrupted segments of the decomposed signal are then identified and removed using the quasi-periodicity of the SCG. Signal quality assessment of the reconstructed SCG beats then removes unreliable beats before feature extraction. The overall approach is validated on simulated vehicle-corrupted SCG generated by adding real subway collected vibration signals onto clean SCG. Results: SNR increased by 8.1dB in the AO complex and 11.5dB in the AC complex of the SCG signal. Hemodynamic timing estimation errors reduced by 16.5% for pre-ejection period (PEP), 67.2% for left ventricular ejection time (LVET), and 57.7% for PEP/LVET—a feature previously determined in prior work to be of great importance for assessing blood volume status during hemorrhage. Conclusion: These findings suggest that usable SCG signals can be recovered from vehicle-corrupted SCG signals using the presented denoising framework, allowing for accurate hemodynamic timing estimation. Significance: Reliable hemodynamic estimates from vehicle-corrupted SCG signals will enable the adoption of the SCG in outside-of-hospital settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着怜珊完成签到 ,获得积分10
刚刚
3秒前
阿九发布了新的文献求助10
3秒前
Aggy完成签到,获得积分10
3秒前
5秒前
8秒前
Jelly发布了新的文献求助10
8秒前
8秒前
9秒前
Yewen发布了新的文献求助10
9秒前
科研通AI2S应助岑寻菱采纳,获得20
10秒前
10秒前
11秒前
12秒前
瑞_应助经竺采纳,获得10
12秒前
eating完成签到,获得积分10
12秒前
13秒前
鲁滨逊发布了新的文献求助10
15秒前
今后应助豆的的的的豆采纳,获得10
15秒前
水开三天发布了新的文献求助20
15秒前
RR发布了新的文献求助10
15秒前
Aggy发布了新的文献求助10
16秒前
16秒前
大卢完成签到,获得积分10
16秒前
18秒前
anqi发布了新的文献求助10
20秒前
hhhhhhan616完成签到,获得积分10
22秒前
23秒前
脑洞疼应助苏苏采纳,获得10
24秒前
赘婿应助苏苏采纳,获得10
24秒前
24秒前
24秒前
25秒前
大个应助GSQ采纳,获得10
25秒前
26秒前
27秒前
和谐诗柳完成签到 ,获得积分10
27秒前
chloe完成签到,获得积分10
27秒前
29秒前
无限的芮发布了新的文献求助10
30秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3391459
求助须知:如何正确求助?哪些是违规求助? 3002609
关于积分的说明 8804678
捐赠科研通 2689177
什么是DOI,文献DOI怎么找? 1472982
科研通“疑难数据库(出版商)”最低求助积分说明 681284
邀请新用户注册赠送积分活动 674184