Using imagery and computer vision as remote monitoring methods for early detection of respiratory disease in pigs

呼吸频率 心率 呼吸速率 生命体征 呼吸 医学 血压 外科 内科学 解剖
作者
Maria Jorquera-Chavez,Sigfredo Fuentes,Frank R. Dunshea,R. D. Warner,Tomas Poblete,Ranjith Rajasekharan Unnithan,R. S. Morrison,Ellen C. Jongman
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:187: 106283-106283 被引量:17
标识
DOI:10.1016/j.compag.2021.106283
摘要

Respiratory diseases in pigs impact the wellbeing of animals and increase the cost of production. One of the most appropriate approaches to minimizing these negative effects is the early detection of ill animals. The use of cameras coupled with computer-based techniques could assist the early detection of physiological changes in pigs when they are beginning to become ill and prior to exhibiting clinical signs. This study consisted of two experiments that aimed to (a) evaluate the use of computer-based techniques over RGB (red, green, and blue) and thermal infrared imagery to measure heart rate and respiration rate of pigs, and (b) to investigate whether eye-temperature, heart rate and respiration rate assessed remotely could be used to identify early signs of respiratory diseases in free-moving, and group-housed growing pigs in a commercial piggery. In the first experiment, the remotely-obtained heart rate and respiration rate were compared with the measures obtained with standard methods, showing positive correlations (r = 0.61 – 0.66; p < 0.05). In the second experiment, pigs were recorded by overhead cameras and the remotely-obtained physiological measures were analysed to identify whether physiological changes could be detected in sick pigs before clinical signs were observed. The changes in eye-temperature and heart rate remotely obtained showed clear differences between sick and healthy pigs two days before clinical signs were detected. While significant changes in respiration rate occurred the day before clinical signs of illness were identified. The results of the present study indicate the possible use of computer vision technique for constant animal monitoring and rapid detection of physiological changes related to illness in commercial pigs. Further research is recommended to continue the development, automatization, and commercial practicality of this novel technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助dht采纳,获得10
1秒前
1秒前
所所应助jinjinjin采纳,获得10
1秒前
高高完成签到,获得积分10
1秒前
科研通AI6应助雪雪啊采纳,获得10
1秒前
2秒前
2秒前
Orange应助wise111采纳,获得10
2秒前
hahaha发布了新的文献求助10
2秒前
4秒前
能干妙松完成签到,获得积分10
4秒前
晴天完成签到,获得积分10
4秒前
4秒前
lixm发布了新的文献求助10
5秒前
Dai完成签到,获得积分10
5秒前
6秒前
echosnooow发布了新的文献求助10
6秒前
文艺的幼菱完成签到,获得积分10
7秒前
bkagyin应助0717采纳,获得10
7秒前
可耐的靖完成签到,获得积分10
8秒前
8秒前
123完成签到,获得积分10
8秒前
核桃应助收拾收拾采纳,获得10
8秒前
Dai发布了新的文献求助10
8秒前
9秒前
呆呆发布了新的文献求助10
10秒前
斯文败类应助T拐拐采纳,获得10
10秒前
在水一方应助烟酒僧采纳,获得10
10秒前
10秒前
FashionBoy应助jingdaitianxiang采纳,获得10
12秒前
万幸鹿发布了新的文献求助10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
英俊的铭应助七两碎银子采纳,获得30
12秒前
打打应助奔跑的胰岛素采纳,获得10
12秒前
大约在冬季完成签到,获得积分10
12秒前
嘿嘿发布了新的文献求助10
13秒前
奈落发布了新的文献求助10
13秒前
贪玩小蘑菇完成签到 ,获得积分10
13秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410082
求助须知:如何正确求助?哪些是违规求助? 4527588
关于积分的说明 14111576
捐赠科研通 4441954
什么是DOI,文献DOI怎么找? 2437768
邀请新用户注册赠送积分活动 1429705
关于科研通互助平台的介绍 1407763