Using imagery and computer vision as remote monitoring methods for early detection of respiratory disease in pigs

呼吸频率 心率 呼吸速率 生命体征 呼吸 医学 血压 外科 内科学 解剖
作者
Maria Jorquera-Chavez,Sigfredo Fuentes,Frank R. Dunshea,R. D. Warner,Tomas Poblete,Ranjith Rajasekharan Unnithan,R. S. Morrison,Ellen C. Jongman
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:187: 106283-106283 被引量:17
标识
DOI:10.1016/j.compag.2021.106283
摘要

Respiratory diseases in pigs impact the wellbeing of animals and increase the cost of production. One of the most appropriate approaches to minimizing these negative effects is the early detection of ill animals. The use of cameras coupled with computer-based techniques could assist the early detection of physiological changes in pigs when they are beginning to become ill and prior to exhibiting clinical signs. This study consisted of two experiments that aimed to (a) evaluate the use of computer-based techniques over RGB (red, green, and blue) and thermal infrared imagery to measure heart rate and respiration rate of pigs, and (b) to investigate whether eye-temperature, heart rate and respiration rate assessed remotely could be used to identify early signs of respiratory diseases in free-moving, and group-housed growing pigs in a commercial piggery. In the first experiment, the remotely-obtained heart rate and respiration rate were compared with the measures obtained with standard methods, showing positive correlations (r = 0.61 – 0.66; p < 0.05). In the second experiment, pigs were recorded by overhead cameras and the remotely-obtained physiological measures were analysed to identify whether physiological changes could be detected in sick pigs before clinical signs were observed. The changes in eye-temperature and heart rate remotely obtained showed clear differences between sick and healthy pigs two days before clinical signs were detected. While significant changes in respiration rate occurred the day before clinical signs of illness were identified. The results of the present study indicate the possible use of computer vision technique for constant animal monitoring and rapid detection of physiological changes related to illness in commercial pigs. Further research is recommended to continue the development, automatization, and commercial practicality of this novel technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
指哪打哪发布了新的文献求助10
刚刚
刚刚
VV发布了新的文献求助30
刚刚
刚刚
1秒前
大个应助wzm采纳,获得10
1秒前
1秒前
2秒前
2秒前
3秒前
瑶瑶完成签到,获得积分10
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
1111应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
4秒前
1111应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
雨中小王应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
nn应助科研通管家采纳,获得10
5秒前
5秒前
nn应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得20
5秒前
5秒前
beichuanheqi发布了新的文献求助10
5秒前
jjyna发布了新的文献求助10
6秒前
Go发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594359
求助须知:如何正确求助?哪些是违规求助? 4680082
关于积分的说明 14812808
捐赠科研通 4646997
什么是DOI,文献DOI怎么找? 2534901
邀请新用户注册赠送积分活动 1502862
关于科研通互助平台的介绍 1469514