Unpaired Image to Image Translation using Cycle Generative Adversarial Networks

计算机科学 图像翻译 生成语法 图像(数学) 人工智能 生成对抗网络 翻译(生物学) 对抗制 生成模型 鉴别器
作者
Abhinav Dwarkani,Maitri Jain,Jash Thakkar,Kottilingam Kottursamy
出处
期刊:International journal of engineering and advanced technology [Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP]
卷期号:9 (6): 380-385 被引量:2
标识
DOI:10.35940/ijeat.f1525.089620
摘要

In this burgeoning age and society where people are tending towards learning the benefits adversarial network we hereby benefiting the society tend to extend our research towards adversarial networks as a general-purpose solution to image-to-image translation problems. Image to image translation comes under the peripheral class of computer sciences extending our branch in the field of neural networks. We apprentice Generative adversarial networks as an optimum solution for generating Image to image translation where our motive is to learn a mapping between an input image(X) and an output image(Y) using a set of predefined pairs[4]. But it is not necessary that the paired dataset is provided to for our use and hence adversarial methods comes into existence. Further, we advance a method that is able to convert and recapture an image from a domain X to another domain Y in the absence of paired datasets. Our objective is to learn a mapping function G: A —B such that the mapping is able to distinguish the images of G(A) within the distribution of B using an adversarial loss.[1] Because this mapping is high biased, we introduce an inverse mapping function F B—A and introduce a cycle consistency loss[7]. Furthermore we wish to extend our research with various domains and involve them with neural style transfer, semantic image synthesis. Our essential commitment is to show that on a wide assortment of issues, conditional GANs produce sensible outcomes. This paper hence calls for the attention to the purpose of converting image X to image Y and we commit to the transfer learning of training dataset and optimising our code.You can find the source code for the same here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助butterfly采纳,获得10
2秒前
3秒前
4秒前
xiubo128完成签到,获得积分10
5秒前
张大然完成签到 ,获得积分10
6秒前
7秒前
7秒前
Coffee完成签到 ,获得积分10
7秒前
7秒前
枯叶蝶完成签到,获得积分20
7秒前
neil_match发布了新的文献求助10
8秒前
shark完成签到,获得积分10
8秒前
9秒前
皇后加哦加哦加哦完成签到,获得积分10
9秒前
斯文败类应助wawaeryu采纳,获得10
11秒前
嘻嘻印完成签到,获得积分10
11秒前
CY发布了新的文献求助10
12秒前
Tethys完成签到 ,获得积分10
12秒前
点点完成签到 ,获得积分10
12秒前
酷炫的涵菡完成签到,获得积分10
12秒前
13秒前
李存发布了新的文献求助10
13秒前
物语完成签到 ,获得积分10
14秒前
orixero应助ze采纳,获得10
15秒前
淡然太君发布了新的文献求助10
16秒前
情怀应助玛格丽特采纳,获得10
16秒前
明理的又柔完成签到,获得积分20
16秒前
dd99081发布了新的文献求助10
16秒前
善良的疯丫头完成签到,获得积分10
17秒前
19秒前
butterfly发布了新的文献求助10
20秒前
21秒前
Fan完成签到,获得积分10
23秒前
初滞发布了新的文献求助10
24秒前
yy发布了新的文献求助10
25秒前
25秒前
slj完成签到,获得积分10
26秒前
ze发布了新的文献求助10
27秒前
Lucas应助科研通管家采纳,获得10
27秒前
子车茗应助科研通管家采纳,获得30
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312191
求助须知:如何正确求助?哪些是违规求助? 2944810
关于积分的说明 8521543
捐赠科研通 2620532
什么是DOI,文献DOI怎么找? 1432870
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115