SAR image super-resolution reconstruction based on cross-resolution discrimination

人工智能 计算机科学 鉴别器 计算机视觉 迭代重建 图像分辨率 合成孔径雷达 图像(数学) 判别式 生成对抗网络 模式识别(心理学) 电信 探测器
作者
Guangyi Xiao,Zhangyu Dong,Xuezhi Yang
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:30 (5): 053018- 被引量:2
标识
DOI:10.1117/1.jei.30.5.053018
摘要

High-resolution (HR) synthetic aperture radar (SAR) images play an important role in people’s daily life and military applications. However, due to the interference of speckle noise, the texture details of the SAR images become relatively blurred. The fine texture details can be reconstructed by increasing the resolution of the SAR images. Generative adversarial networks achieve high performance in image super-resolution (SR) reconstruction, but the existing generative adversarial networks only pay attention to the discrimination of HR images without that of the low-resolution (LR) images. If the reconstructed HR image is sufficiently realistic, the LR image obtained from downsampled super-resolved images should also be the same as the original LR image. To take advantage of the LR image, an SAR image SR reconstruction algorithm based on cross-resolution discrimination (CRD) using teacher–student network is proposed. First, the teacher discriminator network (TD-Net) discriminates the HR images, which enriches the reconstructed HR images with more high-frequency texture details. Second, the student discriminator network (SD-Net) discriminates the LR images, which enables the reconstructed HR images to be accurately downsampled to the original LR image. Finally, the TD-Net guides the training of the SD-Net by transmitting distillation knowledge to the SD-Net, which further improves the discriminative performance of the SD-Net. Experiments on the SAR image dataset demonstrate that the performance of the proposed CRD algorithm is better than other algorithms when both the objective evaluations and subjective effects are considered.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助乐陶陶采纳,获得10
刚刚
Hu完成签到,获得积分10
刚刚
liangliang发布了新的文献求助10
1秒前
1秒前
小兰花完成签到,获得积分10
2秒前
蔚欢发布了新的文献求助10
2秒前
2秒前
梓沫发布了新的文献求助10
3秒前
HhJourney完成签到 ,获得积分10
3秒前
hss关闭了hss文献求助
4秒前
大模型应助科研小白采纳,获得10
4秒前
汉堡包应助小董爱科研采纳,获得10
4秒前
解惑完成签到,获得积分10
4秒前
李健的小迷弟应助ChenLihang采纳,获得10
4秒前
6秒前
酷波er应助哈哈哈的一笑采纳,获得10
6秒前
liangliang完成签到,获得积分10
6秒前
6秒前
纯真如松发布了新的文献求助10
6秒前
ding应助17764715645采纳,获得30
7秒前
7秒前
plant完成签到 ,获得积分10
9秒前
赘婿应助paofu泡芙采纳,获得10
10秒前
不想搞学术完成签到,获得积分10
10秒前
Li发布了新的文献求助20
10秒前
李健的小迷弟应助Uuuuuuumi采纳,获得10
11秒前
xjcy应助伊宝宝采纳,获得10
11秒前
11秒前
MIranda发布了新的文献求助10
12秒前
落后冬云完成签到 ,获得积分10
12秒前
SSSDDDYYY发布了新的文献求助10
12秒前
lyq007完成签到,获得积分10
13秒前
你真是饿了应助kaka091采纳,获得30
13秒前
14秒前
15秒前
16秒前
记得早睡早起bbh完成签到,获得积分20
16秒前
勤奋弋完成签到,获得积分10
17秒前
甲乙丙丁完成签到,获得积分20
17秒前
纯真如松完成签到,获得积分10
18秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212106
求助须知:如何正确求助?哪些是违规求助? 2860906
关于积分的说明 8126737
捐赠科研通 2526835
什么是DOI,文献DOI怎么找? 1360630
科研通“疑难数据库(出版商)”最低求助积分说明 643249
邀请新用户注册赠送积分活动 615571