De novo protein design by deep network hallucination

幻觉 计算生物学 氨基酸 人工神经网络 蛋白质结构 蛋白质二级结构 生物 生物系统 人工智能 计算机科学 遗传学 生物化学
作者
Ivan Anishchenko,Samuel J. Pellock,Tamuka M. Chidyausiku,Theresa A. Ramelot,Sergey Ovchinnikov,Jingzhou Hao,Khushboo Bafna,Christoffer Norn,Alex Kang,Asim K. Bera,Frank DiMaio,Lauren Carter,Cameron M. Chow,G.T. Montelione,David Baker
出处
期刊:Nature [Springer Nature]
卷期号:600 (7889): 547-552 被引量:420
标识
DOI:10.1038/s41586-021-04184-w
摘要

There has been considerable recent progress in protein structure prediction using deep neural networks to predict inter-residue distances from amino acid sequences1–3. Here we investigate whether the information captured by such networks is sufficiently rich to generate new folded proteins with sequences unrelated to those of the naturally occurring proteins used in training the models. We generate random amino acid sequences, and input them into the trRosetta structure prediction network to predict starting residue–residue distance maps, which, as expected, are quite featureless. We then carry out Monte Carlo sampling in amino acid sequence space, optimizing the contrast (Kullback–Leibler divergence) between the inter-residue distance distributions predicted by the network and background distributions averaged over all proteins. Optimization from different random starting points resulted in novel proteins spanning a wide range of sequences and predicted structures. We obtained synthetic genes encoding 129 of the network-‘hallucinated’ sequences, and expressed and purified the proteins in Escherichia coli; 27 of the proteins yielded monodisperse species with circular dichroism spectra consistent with the hallucinated structures. We determined the three-dimensional structures of three of the hallucinated proteins, two by X-ray crystallography and one by NMR, and these closely matched the hallucinated models. Thus, deep networks trained to predict native protein structures from their sequences can be inverted to design new proteins, and such networks and methods should contribute alongside traditional physics-based models to the de novo design of proteins with new functions. The trRosetta neural network was used to iteratively optimise model proteins from random 100-amino-acid sequences, resulting in ‘hallucinated’ proteins, which when expressed in bacteria closely resembled the model structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助学渣向下采纳,获得10
刚刚
刚刚
YML完成签到,获得积分10
1秒前
荣安安完成签到,获得积分10
1秒前
啦某某完成签到,获得积分10
1秒前
sunzhiyu233发布了新的文献求助10
2秒前
zhenzhen发布了新的文献求助10
2秒前
fang发布了新的文献求助10
2秒前
chengyulin完成签到 ,获得积分10
2秒前
孙二二发布了新的文献求助10
2秒前
小二郎应助SY采纳,获得10
3秒前
Akim应助顺心的惜蕊采纳,获得10
4秒前
4秒前
berry完成签到,获得积分20
5秒前
康小郁完成签到,获得积分10
5秒前
快乐友灵完成签到,获得积分10
5秒前
6秒前
群木成林完成签到,获得积分10
6秒前
小白一号完成签到 ,获得积分10
6秒前
Cynthia完成签到 ,获得积分10
6秒前
李惊鸿完成签到,获得积分10
6秒前
6秒前
6秒前
愤怒的子骞完成签到,获得积分10
7秒前
Emilia完成签到,获得积分10
8秒前
9秒前
烩面大师发布了新的文献求助10
9秒前
鲍binyu完成签到,获得积分10
10秒前
Hello应助猪猪hero采纳,获得10
10秒前
今后应助xiuxiu_27采纳,获得10
11秒前
11秒前
jjy发布了新的文献求助10
11秒前
11秒前
在人类完成签到,获得积分10
11秒前
哈雷彗星完成签到,获得积分10
11秒前
系统提示发布了新的文献求助10
11秒前
luca驳回了Orange应助
12秒前
孙二二完成签到,获得积分10
12秒前
迷人圣诞树很闲完成签到,获得积分10
12秒前
优秀的修洁完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759