De novo protein design by deep network hallucination

幻觉 计算生物学 氨基酸 人工神经网络 蛋白质结构 蛋白质二级结构 生物 生物系统 人工智能 计算机科学 遗传学 生物化学
作者
Ivan Anishchenko,Samuel J. Pellock,Tamuka M. Chidyausiku,Theresa A. Ramelot,Sergey Ovchinnikov,Jingzhou Hao,Khushboo Bafna,Christoffer Norn,Alex Kang,Asim K. Bera,Frank DiMaio,Lauren Carter,Cameron M. Chow,G.T. Montelione,David Baker
出处
期刊:Nature [Springer Nature]
卷期号:600 (7889): 547-552 被引量:479
标识
DOI:10.1038/s41586-021-04184-w
摘要

There has been considerable recent progress in protein structure prediction using deep neural networks to predict inter-residue distances from amino acid sequences1–3. Here we investigate whether the information captured by such networks is sufficiently rich to generate new folded proteins with sequences unrelated to those of the naturally occurring proteins used in training the models. We generate random amino acid sequences, and input them into the trRosetta structure prediction network to predict starting residue–residue distance maps, which, as expected, are quite featureless. We then carry out Monte Carlo sampling in amino acid sequence space, optimizing the contrast (Kullback–Leibler divergence) between the inter-residue distance distributions predicted by the network and background distributions averaged over all proteins. Optimization from different random starting points resulted in novel proteins spanning a wide range of sequences and predicted structures. We obtained synthetic genes encoding 129 of the network-‘hallucinated’ sequences, and expressed and purified the proteins in Escherichia coli; 27 of the proteins yielded monodisperse species with circular dichroism spectra consistent with the hallucinated structures. We determined the three-dimensional structures of three of the hallucinated proteins, two by X-ray crystallography and one by NMR, and these closely matched the hallucinated models. Thus, deep networks trained to predict native protein structures from their sequences can be inverted to design new proteins, and such networks and methods should contribute alongside traditional physics-based models to the de novo design of proteins with new functions. The trRosetta neural network was used to iteratively optimise model proteins from random 100-amino-acid sequences, resulting in ‘hallucinated’ proteins, which when expressed in bacteria closely resembled the model structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肥波完成签到,获得积分10
1秒前
111发布了新的文献求助10
2秒前
奋斗雪巧发布了新的文献求助10
3秒前
啦啦啦发布了新的文献求助10
3秒前
伏玉完成签到,获得积分10
4秒前
科研通AI6应助keyanqianjin采纳,获得10
6秒前
阿道完成签到,获得积分10
6秒前
ZongchenYang发布了新的文献求助10
7秒前
星空下的皮先生完成签到,获得积分10
7秒前
你相信光吗完成签到,获得积分10
8秒前
小蘑菇应助秋秋采纳,获得10
9秒前
呼hu完成签到 ,获得积分10
10秒前
小糊涂完成签到,获得积分10
11秒前
希望天下0贩的0应助蛋蛋采纳,获得10
12秒前
12秒前
木风落完成签到,获得积分10
12秒前
大气葶应助wy采纳,获得10
13秒前
现代雪柳完成签到,获得积分10
13秒前
星辰大海应助ZongchenYang采纳,获得10
13秒前
14秒前
leiqin完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
现代雪柳发布了新的文献求助10
17秒前
科研通AI6应助伏玉采纳,获得10
18秒前
Song0558完成签到 ,获得积分10
18秒前
Dou_Xiaowen发布了新的文献求助10
19秒前
Ding发布了新的文献求助10
19秒前
mariannelee发布了新的文献求助10
19秒前
悲凉的大娘完成签到 ,获得积分10
19秒前
小溪完成签到,获得积分20
19秒前
桐桐应助潇洒飞丹采纳,获得10
20秒前
CC发布了新的文献求助10
21秒前
斯文从筠发布了新的文献求助10
21秒前
大洋猪发布了新的文献求助10
21秒前
11发布了新的文献求助10
23秒前
jzhou88完成签到,获得积分10
23秒前
23秒前
23秒前
小溪发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458217
求助须知:如何正确求助?哪些是违规求助? 4564343
关于积分的说明 14294578
捐赠科研通 4489225
什么是DOI,文献DOI怎么找? 2458909
邀请新用户注册赠送积分活动 1448785
关于科研通互助平台的介绍 1424417