De novo protein design by deep network hallucination

幻觉 计算生物学 氨基酸 人工神经网络 蛋白质结构 蛋白质二级结构 生物 生物系统 人工智能 计算机科学 遗传学 生物化学
作者
Ivan Anishchenko,Samuel J. Pellock,Tamuka M. Chidyausiku,Theresa A. Ramelot,Sergey Ovchinnikov,Jingzhou Hao,Khushboo Bafna,Christoffer Norn,Alex Kang,Asim K. Bera,Frank DiMaio,Lauren Carter,Cameron M. Chow,G.T. Montelione,David Baker
出处
期刊:Nature [Springer Nature]
卷期号:600 (7889): 547-552 被引量:352
标识
DOI:10.1038/s41586-021-04184-w
摘要

There has been considerable recent progress in protein structure prediction using deep neural networks to predict inter-residue distances from amino acid sequences1–3. Here we investigate whether the information captured by such networks is sufficiently rich to generate new folded proteins with sequences unrelated to those of the naturally occurring proteins used in training the models. We generate random amino acid sequences, and input them into the trRosetta structure prediction network to predict starting residue–residue distance maps, which, as expected, are quite featureless. We then carry out Monte Carlo sampling in amino acid sequence space, optimizing the contrast (Kullback–Leibler divergence) between the inter-residue distance distributions predicted by the network and background distributions averaged over all proteins. Optimization from different random starting points resulted in novel proteins spanning a wide range of sequences and predicted structures. We obtained synthetic genes encoding 129 of the network-‘hallucinated’ sequences, and expressed and purified the proteins in Escherichia coli; 27 of the proteins yielded monodisperse species with circular dichroism spectra consistent with the hallucinated structures. We determined the three-dimensional structures of three of the hallucinated proteins, two by X-ray crystallography and one by NMR, and these closely matched the hallucinated models. Thus, deep networks trained to predict native protein structures from their sequences can be inverted to design new proteins, and such networks and methods should contribute alongside traditional physics-based models to the de novo design of proteins with new functions. The trRosetta neural network was used to iteratively optimise model proteins from random 100-amino-acid sequences, resulting in ‘hallucinated’ proteins, which when expressed in bacteria closely resembled the model structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜蜜的代容完成签到,获得积分20
1秒前
甘总完成签到,获得积分10
1秒前
Baozi发布了新的文献求助10
2秒前
发型犀利啊应助蕉太狼采纳,获得10
2秒前
Owen应助l2023采纳,获得10
2秒前
3秒前
3秒前
杨家欢发布了新的文献求助10
4秒前
4秒前
诚心忆秋发布了新的文献求助10
4秒前
xiaoz完成签到,获得积分10
5秒前
5秒前
7秒前
小猪完成签到 ,获得积分10
7秒前
9秒前
9秒前
情怀应助soar采纳,获得30
10秒前
甜田完成签到,获得积分10
10秒前
10秒前
11秒前
垃圾桶发布了新的文献求助10
11秒前
努力生活的小柴完成签到,获得积分10
11秒前
迷宫废墟完成签到,获得积分10
11秒前
殷勤的阑悦完成签到 ,获得积分10
12秒前
朱少龙发布了新的文献求助10
13秒前
小二郎应助双眸若星辰采纳,获得10
13秒前
原鑫完成签到,获得积分10
16秒前
wmx完成签到,获得积分10
16秒前
都是发布了新的文献求助10
16秒前
花佩剑发布了新的文献求助10
16秒前
16秒前
wangwangdui完成签到,获得积分10
17秒前
fdu_sf发布了新的文献求助10
18秒前
li完成签到 ,获得积分10
19秒前
彳亍1117应助布鲁爱思采纳,获得20
19秒前
结实煎饼完成签到,获得积分10
20秒前
纸上彩虹完成签到 ,获得积分10
20秒前
zly发布了新的文献求助10
20秒前
心想事陈同学完成签到,获得积分10
21秒前
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145276
求助须知:如何正确求助?哪些是违规求助? 2796719
关于积分的说明 7820904
捐赠科研通 2452997
什么是DOI,文献DOI怎么找? 1305336
科研通“疑难数据库(出版商)”最低求助积分说明 627483
版权声明 601464