De novo protein design by deep network hallucination

幻觉 计算生物学 氨基酸 人工神经网络 蛋白质结构 蛋白质二级结构 生物 生物系统 人工智能 计算机科学 遗传学 生物化学
作者
Ivan Anishchenko,Samuel J. Pellock,Tamuka M. Chidyausiku,Theresa A. Ramelot,Sergey Ovchinnikov,Jingzhou Hao,Khushboo Bafna,Christoffer Norn,Alex Kang,Asim K. Bera,Frank DiMaio,Lauren Carter,Cameron M. Chow,G.T. Montelione,David Baker
出处
期刊:Nature [Nature Portfolio]
卷期号:600 (7889): 547-552 被引量:443
标识
DOI:10.1038/s41586-021-04184-w
摘要

There has been considerable recent progress in protein structure prediction using deep neural networks to predict inter-residue distances from amino acid sequences1–3. Here we investigate whether the information captured by such networks is sufficiently rich to generate new folded proteins with sequences unrelated to those of the naturally occurring proteins used in training the models. We generate random amino acid sequences, and input them into the trRosetta structure prediction network to predict starting residue–residue distance maps, which, as expected, are quite featureless. We then carry out Monte Carlo sampling in amino acid sequence space, optimizing the contrast (Kullback–Leibler divergence) between the inter-residue distance distributions predicted by the network and background distributions averaged over all proteins. Optimization from different random starting points resulted in novel proteins spanning a wide range of sequences and predicted structures. We obtained synthetic genes encoding 129 of the network-‘hallucinated’ sequences, and expressed and purified the proteins in Escherichia coli; 27 of the proteins yielded monodisperse species with circular dichroism spectra consistent with the hallucinated structures. We determined the three-dimensional structures of three of the hallucinated proteins, two by X-ray crystallography and one by NMR, and these closely matched the hallucinated models. Thus, deep networks trained to predict native protein structures from their sequences can be inverted to design new proteins, and such networks and methods should contribute alongside traditional physics-based models to the de novo design of proteins with new functions. The trRosetta neural network was used to iteratively optimise model proteins from random 100-amino-acid sequences, resulting in ‘hallucinated’ proteins, which when expressed in bacteria closely resembled the model structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
布鲁布鲁完成签到,获得积分10
1秒前
欣慰白山应助wjx采纳,获得10
1秒前
2秒前
所所应助hhyy采纳,获得20
2秒前
suki完成签到,获得积分10
2秒前
2秒前
Rabbit完成签到,获得积分10
2秒前
猪猪hero发布了新的文献求助10
2秒前
星空发布了新的文献求助10
3秒前
啦啦鱼发布了新的文献求助10
3秒前
无聊的蚂蚁完成签到,获得积分10
4秒前
4秒前
崔家泽熙完成签到,获得积分10
4秒前
义气绿柳发布了新的文献求助10
4秒前
lty完成签到,获得积分20
4秒前
liuhang完成签到,获得积分10
5秒前
JamesPei应助夏安采纳,获得10
5秒前
5秒前
汤翔完成签到,获得积分10
5秒前
欢喜蛋挞完成签到,获得积分10
5秒前
6秒前
6秒前
hea完成签到,获得积分10
6秒前
typpppp完成签到,获得积分10
6秒前
6秒前
X519664508完成签到,获得积分0
7秒前
7秒前
8秒前
lizhaoyu完成签到,获得积分10
8秒前
沉静亿先完成签到,获得积分10
9秒前
晴天完成签到,获得积分10
9秒前
9秒前
9秒前
AHR发布了新的文献求助10
9秒前
科研通AI2S应助123采纳,获得10
9秒前
程住气完成签到 ,获得积分10
10秒前
11秒前
11秒前
Akim应助空心胶囊采纳,获得10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009557
求助须知:如何正确求助?哪些是违规求助? 3549561
关于积分的说明 11302629
捐赠科研通 3284139
什么是DOI,文献DOI怎么找? 1810469
邀请新用户注册赠送积分活动 886322
科研通“疑难数据库(出版商)”最低求助积分说明 811345