DeepLesionBrain: Towards a broader deep-learning generalization for multiple sclerosis lesion segmentation

一般化 人工智能 分割 模式识别(心理学) 深度学习 多发性硬化 计算机科学 机器学习 数学 医学 精神科 数学分析
作者
Reda Abdellah Kamraoui,Vinh‐Thong Ta,Thomas Tourdias,Boris Mansencal,José V. Manjón,Pierrick Coupé
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:76: 102312-102312 被引量:45
标识
DOI:10.1016/j.media.2021.102312
摘要

Recently, segmentation methods based on Convolutional Neural Networks (CNNs) showed promising performance in automatic Multiple Sclerosis (MS) lesions segmentation. These techniques have even outperformed human experts in controlled evaluation conditions such as Longitudinal MS Lesion Segmentation Challenge (ISBI Challenge). However, state-of-the-art approaches trained to perform well on highly-controlled datasets fail to generalize on clinical data from unseen datasets. Instead of proposing another improvement of the segmentation accuracy, we propose a novel method robust to domain shift and performing well on unseen datasets, called DeepLesionBrain (DLB). This generalization property results from three main contributions. First, DLB is based on a large group of compact 3D CNNs. This spatially distributed strategy aims to produce a robust prediction despite the risk of generalization failure of some individual networks. Second, we propose a hierarchical specialization learning (HSL) by pre-training a generic network over the whole brain, before using its weights as initialization to locally specialized networks. By this end, DLB learns both generic features extracted at global image level and specific features extracted at local image level. Finally, DLB includes a new image quality data augmentation to reduce dependency to training data specificity (e.g., acquisition protocol). DLB generalization was validated in cross-dataset experiments on MSSEG'16, ISBI challenge, and in-house datasets. During experiments, DLB showed higher segmentation accuracy, better segmentation consistency and greater generalization performance compared to state-of-the-art methods. Therefore, DLB offers a robust framework well-suited for clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
西柚应助玩命的若采纳,获得10
1秒前
1秒前
YangyangLiu完成签到,获得积分10
2秒前
研友_想想完成签到,获得积分10
2秒前
3秒前
weiqi发布了新的文献求助10
3秒前
cjw完成签到,获得积分10
3秒前
4秒前
王一博完成签到,获得积分10
4秒前
怕孤独的乌龟完成签到 ,获得积分10
5秒前
太叔丹翠完成签到,获得积分10
5秒前
打打应助大鱼采纳,获得10
5秒前
qicaoji发布了新的文献求助10
5秒前
cjw发布了新的文献求助10
5秒前
彭于晏应助科研通管家采纳,获得20
6秒前
思源应助科研通管家采纳,获得10
6秒前
6秒前
xiaojcom应助科研通管家采纳,获得10
6秒前
6秒前
碧蓝难胜发布了新的文献求助10
7秒前
ckz完成签到,获得积分10
7秒前
8秒前
Shandongdaxiu发布了新的文献求助10
8秒前
9秒前
酒酿完成签到,获得积分10
9秒前
Pipper完成签到,获得积分10
9秒前
11秒前
11秒前
RYY完成签到,获得积分20
11秒前
积极冷霜完成签到,获得积分10
12秒前
称心凡霜完成签到,获得积分10
13秒前
move发布了新的文献求助10
15秒前
鱼贝贝完成签到 ,获得积分10
15秒前
香蕉觅云应助重要的天空采纳,获得10
16秒前
晓恬完成签到,获得积分10
17秒前
葡萄干发布了新的文献求助10
17秒前
xingcheng完成签到,获得积分10
17秒前
专一的猎豹完成签到,获得积分10
17秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180114
求助须知:如何正确求助?哪些是违规求助? 2830498
关于积分的说明 7977736
捐赠科研通 2492069
什么是DOI,文献DOI怎么找? 1329190
科研通“疑难数据库(出版商)”最低求助积分说明 635704
版权声明 602954