A Many-Objective Evolutionary Algorithm Based on New Angle Penalized Distance

进化算法 趋同(经济学) 数学优化 人口 计算机科学 进化计算 度量(数据仓库) 选择(遗传算法) 算法 早熟收敛 数学 机器学习 粒子群优化 数据挖掘 社会学 人口学 经济 经济增长
作者
Junchao Fang,Wei Fang
标识
DOI:10.1109/cec45853.2021.9504935
摘要

In evolutionary many-objective optimization, achieving better balance between convergence and diversity of the population is a crucial way to improve the efficiency of the algorithm. However, diversity measure may select the individuals having good diversity but degrade the convergence process to a certain extent. If the convergence measure focuses on the convergence of the individuals too much, it may lead to local convergence. The selection pressure achieves a severe loss, especially when the Pareto dominance selection mechanism is difficult to select solutions. To address these issues, a many-objective evolutionary algorithm based on new angle penalized distance is proposed in this paper, which is termed MaOEA-NAPD. In MaOEA-NAPD, it could dynamically balance the convergence and diversity of the population concerning their importance degree during the evolutionary process based on new angle penalized distance. In order to enhance the selection probability of better solutions in the mating pool, new convergence measure and diversity measure are introduced according to the achievement scalarizing function and angle based crowding degree estimation, respectively. The performance of the proposed method is evaluated and compared with five state-of-the-art algorithms on the WFG test suites with up to 15 objectives. Experimental results show the superior performance of MaOEA-NAPD than the compared algorithms on all the considered test instances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真读文献应助hitagi采纳,获得10
刚刚
Buduan发布了新的文献求助10
刚刚
星辰大海应助慎独而已采纳,获得20
刚刚
1秒前
1秒前
linger完成签到,获得积分10
2秒前
2秒前
顾建瑜发布了新的文献求助10
2秒前
充电宝应助11采纳,获得10
3秒前
3秒前
苹果黄豆完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
还行吧就这啊完成签到 ,获得积分10
6秒前
科研通AI2S应助rou采纳,获得10
7秒前
小蘑菇应助酷酷豪采纳,获得10
7秒前
yydw发布了新的文献求助30
7秒前
8秒前
鲤鱼初柳完成签到,获得积分10
8秒前
可爱的函函应助青藤采纳,获得10
8秒前
Orange应助sun采纳,获得10
9秒前
肥而不腻的羚羊完成签到,获得积分0
9秒前
ycc发布了新的文献求助10
10秒前
海底月完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
mochen0722发布了新的文献求助30
11秒前
追梦完成签到 ,获得积分10
11秒前
11秒前
Sun1c7发布了新的文献求助30
11秒前
11秒前
12秒前
Xiaoyu完成签到,获得积分20
12秒前
Elytra发布了新的文献求助10
12秒前
京城世界完成签到,获得积分10
12秒前
Chao完成签到,获得积分10
13秒前
小魏完成签到 ,获得积分10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148931
求助须知:如何正确求助?哪些是违规求助? 2799908
关于积分的说明 7837731
捐赠科研通 2457479
什么是DOI,文献DOI怎么找? 1307870
科研通“疑难数据库(出版商)”最低求助积分说明 628312
版权声明 601685