亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Many-Objective Evolutionary Algorithm Based on New Angle Penalized Distance

进化算法 趋同(经济学) 数学优化 人口 计算机科学 进化计算 度量(数据仓库) 选择(遗传算法) 算法 早熟收敛 数学 机器学习 粒子群优化 数据挖掘 人口学 社会学 经济 经济增长
作者
Junchao Fang,Wei Fang
标识
DOI:10.1109/cec45853.2021.9504935
摘要

In evolutionary many-objective optimization, achieving better balance between convergence and diversity of the population is a crucial way to improve the efficiency of the algorithm. However, diversity measure may select the individuals having good diversity but degrade the convergence process to a certain extent. If the convergence measure focuses on the convergence of the individuals too much, it may lead to local convergence. The selection pressure achieves a severe loss, especially when the Pareto dominance selection mechanism is difficult to select solutions. To address these issues, a many-objective evolutionary algorithm based on new angle penalized distance is proposed in this paper, which is termed MaOEA-NAPD. In MaOEA-NAPD, it could dynamically balance the convergence and diversity of the population concerning their importance degree during the evolutionary process based on new angle penalized distance. In order to enhance the selection probability of better solutions in the mating pool, new convergence measure and diversity measure are introduced according to the achievement scalarizing function and angle based crowding degree estimation, respectively. The performance of the proposed method is evaluated and compared with five state-of-the-art algorithms on the WFG test suites with up to 15 objectives. Experimental results show the superior performance of MaOEA-NAPD than the compared algorithms on all the considered test instances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
生动的煎蛋完成签到 ,获得积分10
8秒前
su完成签到 ,获得积分10
14秒前
17秒前
37秒前
科研通AI2S应助科研通管家采纳,获得10
45秒前
ceeray23应助科研通管家采纳,获得10
45秒前
45秒前
46秒前
1分钟前
拿起蜡笔小新完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
lazysheep关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
1分钟前
闪闪的梦柏完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
完美世界应助gbb采纳,获得10
2分钟前
2分钟前
树洞里的刺猬完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
Cherish发布了新的文献求助10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
执着的怜寒完成签到 ,获得积分10
2分钟前
情怀应助东京今夜下雪采纳,获得10
2分钟前
3分钟前
ANG完成签到 ,获得积分10
3分钟前
3分钟前
直率三问完成签到,获得积分10
3分钟前
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650948
求助须知:如何正确求助?哪些是违规求助? 4782232
关于积分的说明 15052807
捐赠科研通 4809729
什么是DOI,文献DOI怎么找? 2572530
邀请新用户注册赠送积分活动 1528569
关于科研通互助平台的介绍 1487549