内科学
医学
血小板
心脏病学
内皮功能障碍
内分泌学
作者
Muriel Bouly,Marie-Pierre Bourguignon,Susanne Roesch,Pascal Rigouin,Willy Gosgnach,E Bossard,Emilie Royère,Nicolas Diguet,Patricia Sansilvestri-Morel,Ariane Bonnin,Laura Xuereb,Pascal Berson,Michel Komajda,Peter Bernhardt,Benoît Tyl
标识
DOI:10.1016/j.trsl.2021.07.004
摘要
Little is known about the mechanisms of aging on vascular beds and its relationship with tetra and di-hydrobiopterin (BH4 and BH2) levels. This observational clinical study analyzed the impact of aging on plasma and platelet biopterins, cutaneous blood flow (CBF), and coronary flow reserve (CFR) in healthy adults. The study enrolled healthy adults in 3 age groups: 18-30, 50-59, and 60-70 years (n = 25/group). Biopterins were assessed by LC-MS/MS using newly defined pre-analytical conditions limiting BH4 oxidation and improving long-term stability. CBF was measured by Laser Speckle Contrast Imaging coupled with acetylcholine-iontophoresis and CFR by adenosine stress cardiac magnetic resonance. In healthy adults, aging (60-70 years vs 18-30 years) significantly increased platelet BH2 (+75%, P = 0.033) and BH2 + BH4 (+31%, P = 0.033), and to a lesser extent plasma BH2 (+29%, P = 0.009) without affecting BH4 and BH4/BH2. Simultaneously, CBF was decreased (-23%, P = 0.004) but not CFR, CBF being inversely correlated with platelet BH2 (r = -0.42, P = 0.001) and BH2 + BH4 (r = -0.41, P = 0.002). The proportion of adults with abnormal platelet BH2 increased with age (+28% in 60-70y). These abnormal BH2 levels were significantly associated with reduced CBF and CFR (-16%, P = 0.03 and -26%, P = 0.02). In conclusion, our study showed that age-related peripheral endothelial dysfunction was associated with an increase in circulating BH2 without decreasing BH4, the effect being more marked in platelets, the most relevant blood compartment to assess biopterin bioavailability. Peripheral but not coronary vascular function is progressively impaired with aging in healthy adults. All these findings support biopterins as therapeutic targets to improve vascular function.
科研通智能强力驱动
Strongly Powered by AbleSci AI