Emission source tracing based on bionic algorithm mobile sensors with artificial olfactory system

之字形的 追踪 算法 机器人 移动机器人 计算机科学 工程类 人工智能 实时计算 模拟 数学 几何学 操作系统
作者
Denglong Ma,Weigao Mao,Wei Tan,Jianmin Gao,Zaoxiao Zhang,Yunchuan Xie
出处
期刊:Robotica [Cambridge University Press]
卷期号:40 (4): 976-996 被引量:10
标识
DOI:10.1017/s0263574721000904
摘要

Abstract The leakage of hazardous chemicals and toxic volatile substances in the atmosphere may cause serious consequences such as explosion and poisoning. To identify the unknown leakage locations and gas compositions, a mobile robot system to trace the leak source in the outdoor was investigated. First, two bionic searching algorithms, Zigzag and Silkworm algorithms, were tested with outdoor experiments for locating the leak source. The results showed that the locating errors of these two algorithms were within 0.5 m in 10 by 20 m search space, but the failing ratio of Zigzag and Silkworm algorithm was still high (about 40–50%). Therefore, an improved tracing algorithm combining the Silkworm and Zigzag algorithm, called as zigzag–Silkworm algorithm, was proposed. Compared with Silkworm and Zigzag algorithms, zigzag–Silkworm algorithm had a higher success ratio of 80% in outdoor source tracing tests, and the searching efficiency was enhanced, the efficiency parameter L: L 0 has improved from 2.58 for Silkworm and 2.66 for Zigzag to 2.17 for zigzag–Silkworm. Then, in order to identify the composition of the leaked gases during the source tracing, an artificial olfaction system (AOS) based on the gas sensor array and support vector machine was set on the mobile robot. The test results in the source tracing experiments with ammonia and ethanol emissions indicated that the recognition accuracy of emission gases reached to 99% with AOS equipped on the robot. Therefore, the mobile robot system equipped with the zigzag–Silkworm algorithm and the AOS is feasible to trace the leakage source and identify the emission composition in the outdoor leakage event with good performance in efficiency and accuracy although some underlying problems still need to be addressed in future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Krazy完成签到,获得积分10
刚刚
所所应助yujie采纳,获得10
刚刚
归尘发布了新的文献求助10
刚刚
小飞完成签到,获得积分10
刚刚
盛夏之末发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
大方溪流完成签到,获得积分10
2秒前
景妙海完成签到,获得积分10
2秒前
脑洞疼应助2222233采纳,获得10
2秒前
顾化蛹发布了新的文献求助10
3秒前
向言之完成签到,获得积分10
3秒前
Lynn完成签到,获得积分10
3秒前
乐乐应助陆lu采纳,获得10
3秒前
彭于晏应助何YI采纳,获得10
4秒前
4秒前
奇遇完成签到,获得积分20
4秒前
顾矜应助我爱读文献采纳,获得10
4秒前
4秒前
5秒前
陈开心完成签到,获得积分10
5秒前
wjfjs2cd发布了新的文献求助10
6秒前
6秒前
恋上鱼的猫完成签到,获得积分10
7秒前
林云夕完成签到,获得积分10
7秒前
8秒前
8秒前
晓晓来了发布了新的文献求助10
8秒前
8秒前
9秒前
柒柒_BX发布了新的文献求助10
9秒前
aiqiangyu发布了新的文献求助10
9秒前
无花果应助奇遇采纳,获得10
9秒前
深情安青应助幽默的绿草采纳,获得20
10秒前
10秒前
鱼儿123完成签到,获得积分10
10秒前
11秒前
cheryl发布了新的文献求助30
12秒前
张努力发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559249
求助须知:如何正确求助?哪些是违规求助? 3133915
关于积分的说明 9404473
捐赠科研通 2834019
什么是DOI,文献DOI怎么找? 1557787
邀请新用户注册赠送积分活动 727686
科研通“疑难数据库(出版商)”最低求助积分说明 716399