Task-Sequencing Meta Learning for Intelligent Few-Shot Fault Diagnosis With Limited Data

计算机科学 初始化 人工智能 机器学习 断层(地质) 分类 任务(项目管理) 元学习(计算机科学) 工程类 情报检索 地质学 地震学 程序设计语言 系统工程
作者
Yidan Hu,Ruonan Liu,Xianling Li,Dongyue Chen,Qinghua Hu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (6): 3894-3904 被引量:99
标识
DOI:10.1109/tii.2021.3112504
摘要

Recently, deep learning-based intelligent fault diagnosis methods have been developed rapidly, which rely on massive data to train the diagnosis model. However, it is usually difficult to collect sufficient failure data in practical industrial production, thus limits the application of intelligent diagnosis methods. To address the few-shot fault diagnosis problem, a task-sequencing meta-learning method is proposed in this article. First, the meta-learning model is trained over a series of learning tasks to obtain knowledge about how to diagnosis. Thus, the learned knowledge can help adapt and generalize with a few examples when dealing with new tasks that have never been encountered. Then, considering the difference and connection between different failures and diagnosis tasks, a task-sequencing algorithm is proposed to sort meta training tasks from easy to difficult, which followed the way human acquire knowledge. After evaluating the difficulty of each task, the proposed method learns simple tasks first and generalizes the learned knowledge to complex tasks. Better knowledge adaptability is obtained by gradually increasing the task difficulty. Finally, utilizing gradient-based meta learning, the initialization parameters are trained by a small number of gradient steps. The effectiveness of the proposed method is validated by a practice rolling bearing dataset and a power system dataset. The experiment results illustrate that the proposed method can identify new categories with only several samples. In addition, it also shows advantages in fault diagnosis when the categories are fine-grained according to the working conditions. Therefore, the proposed method is suitable for solving the few-shot problem in practice and complicated fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
YYYY完成签到,获得积分20
2秒前
嗯嗯完成签到 ,获得积分10
3秒前
国家栋梁完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
Akim应助tingting采纳,获得10
3秒前
缓慢如南应助机智谷蕊采纳,获得20
4秒前
Apricot发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
iii发布了新的文献求助10
5秒前
5秒前
mh完成签到,获得积分20
5秒前
科研小白完成签到 ,获得积分10
5秒前
5秒前
HH发布了新的文献求助10
6秒前
6秒前
offshore完成签到 ,获得积分10
8秒前
DAYDAY完成签到 ,获得积分10
9秒前
mh发布了新的文献求助10
9秒前
SciGPT应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
10秒前
所所应助科研通管家采纳,获得10
10秒前
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
10秒前
扶风阁主发布了新的文献求助10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
articlechaser发布了新的文献求助10
10秒前
10秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561460
求助须知:如何正确求助?哪些是违规求助? 3135069
关于积分的说明 9410959
捐赠科研通 2835535
什么是DOI,文献DOI怎么找? 1558477
邀请新用户注册赠送积分活动 728249
科研通“疑难数据库(出版商)”最低求助积分说明 716742