已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An adaptive federated learning scheme with differential privacy preserving

计算机科学 差别隐私 方案(数学) 稳健性(进化) 过度拟合 人工智能 分布式学习 机器学习 联合学习 适应性学习 过程(计算) 分布式计算 数据挖掘 人工神经网络 化学 数学分析 基因 操作系统 心理学 生物化学 数学 教育学
作者
Xiang Wu,Yongting Zhang,Minyu Shi,Pei Li,Ruirui Li,Naixue Xiong
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:127: 362-372 被引量:129
标识
DOI:10.1016/j.future.2021.09.015
摘要

Driven by the upcoming development of the sixth-generation communication system (6G), the distributed machine learning schemes represented by federated learning has shown advantages in data utilization and multi-party cooperative model training. The total communication costs of federated learning is related to the number of communication rounds, the communication consumption of each participants, the setting of reasonable learning rate and the guarantee of calculation fairness. In addition, the isolating data strategy in the federated learning framework cannot completely guarantee the privacy security of users. Motivated by the above problems, this paper proposes a federated learning scheme combined with the adaptive gradient descent strategy and differential privacy mechanism, which is suitable for multi-party collaborative modeling scenarios. To ensure that federated learning scheme can train efficiently with limited communications costs, the adaptive learning rate algorithm is innovatively used to adjust the gradient descent process and avoid the model overfitting and fluctuation phenomena, so as to improve the modeling efficiency and performance in multi-party calculation scenarios. Furthermore, in order to adapt to the ultra-large-scale distributed secure computing scenario, this research introduces differential privacy mechanism to resist various background knowledge attacks. Experimental results demonstrate that the proposed adaptive federated learning model performs better than the traditional models under fixed communication costs. This novel modeling scheme also has strong robustness to different super-parameter settings and provides stronger quantifiable privacy preserving for federated learning process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuo0976应助科研小弟采纳,获得10
刚刚
Young完成签到 ,获得积分10
2秒前
小白完成签到,获得积分10
3秒前
英姑应助李昶采纳,获得10
3秒前
李健应助贺万万采纳,获得10
4秒前
4秒前
echopussy应助阿狸在睡觉采纳,获得10
4秒前
5秒前
万能图书馆应助liwh采纳,获得10
6秒前
move发布了新的文献求助30
8秒前
桐桐应助Maple采纳,获得10
8秒前
麦克尔完成签到,获得积分10
8秒前
丢丢在吗发布了新的文献求助10
10秒前
10秒前
12秒前
贺万万完成签到,获得积分10
14秒前
甲乙丙丁完成签到 ,获得积分10
14秒前
15秒前
15秒前
王羿发布了新的文献求助10
15秒前
李昶发布了新的文献求助10
15秒前
碧蓝的盼夏完成签到,获得积分10
16秒前
KKK完成签到 ,获得积分10
16秒前
香蕉觅云应助move采纳,获得10
17秒前
18秒前
优秀凡儿完成签到,获得积分20
18秒前
20秒前
爆米花应助清风白鹭采纳,获得10
22秒前
22秒前
22秒前
小白发布了新的文献求助10
23秒前
13675329716发布了新的文献求助10
24秒前
25秒前
9999发布了新的文献求助10
27秒前
Maple发布了新的文献求助10
27秒前
28秒前
29秒前
友好听云发布了新的文献求助10
29秒前
Solomon完成签到 ,获得积分0
29秒前
zho发布了新的文献求助10
30秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725129
求助须知:如何正确求助?哪些是违规求助? 3270246
关于积分的说明 9965146
捐赠科研通 2985203
什么是DOI,文献DOI怎么找? 1637795
邀请新用户注册赠送积分活动 777724
科研通“疑难数据库(出版商)”最低求助积分说明 747171