An adaptive federated learning scheme with differential privacy preserving

计算机科学 差别隐私 方案(数学) 稳健性(进化) 过度拟合 人工智能 分布式学习 机器学习 联合学习 适应性学习 过程(计算) 分布式计算 数据挖掘 人工神经网络 化学 数学分析 基因 操作系统 心理学 生物化学 数学 教育学
作者
Xiang Wu,Yongting Zhang,Minyu Shi,Pei Li,Ruirui Li,Naixue Xiong
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:127: 362-372 被引量:103
标识
DOI:10.1016/j.future.2021.09.015
摘要

Driven by the upcoming development of the sixth-generation communication system (6G), the distributed machine learning schemes represented by federated learning has shown advantages in data utilization and multi-party cooperative model training. The total communication costs of federated learning is related to the number of communication rounds, the communication consumption of each participants, the setting of reasonable learning rate and the guarantee of calculation fairness. In addition, the isolating data strategy in the federated learning framework cannot completely guarantee the privacy security of users. Motivated by the above problems, this paper proposes a federated learning scheme combined with the adaptive gradient descent strategy and differential privacy mechanism, which is suitable for multi-party collaborative modeling scenarios. To ensure that federated learning scheme can train efficiently with limited communications costs, the adaptive learning rate algorithm is innovatively used to adjust the gradient descent process and avoid the model overfitting and fluctuation phenomena, so as to improve the modeling efficiency and performance in multi-party calculation scenarios. Furthermore, in order to adapt to the ultra-large-scale distributed secure computing scenario, this research introduces differential privacy mechanism to resist various background knowledge attacks. Experimental results demonstrate that the proposed adaptive federated learning model performs better than the traditional models under fixed communication costs. This novel modeling scheme also has strong robustness to different super-parameter settings and provides stronger quantifiable privacy preserving for federated learning process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仲乔妹完成签到,获得积分10
1秒前
2秒前
3秒前
6秒前
lango完成签到 ,获得积分10
6秒前
8秒前
9秒前
恒河鲤完成签到,获得积分10
10秒前
xiangpimei完成签到 ,获得积分10
11秒前
11秒前
13秒前
此去经年完成签到 ,获得积分10
13秒前
Jiang 小白发布了新的文献求助10
13秒前
科目三应助科研通管家采纳,获得30
14秒前
田様应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
Jun应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
几酌应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
华仔应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
青椒不焦完成签到,获得积分10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
15秒前
斐_应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
几酌应助科研通管家采纳,获得10
15秒前
16秒前
完美世界应助freedom采纳,获得10
16秒前
17秒前
可靠的老鼠完成签到,获得积分10
17秒前
yuwan发布了新的文献求助10
20秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165183
求助须知:如何正确求助?哪些是违规求助? 2816187
关于积分的说明 7911845
捐赠科研通 2475930
什么是DOI,文献DOI怎么找? 1318423
科研通“疑难数据库(出版商)”最低求助积分说明 632143
版权声明 602388