DFT-Machine Learning Approach for Accurate Prediction of pKa

超参数 管道(软件) 人工神经网络 试验装置 人工智能 核(代数) 计算机科学 回归 机器学习 克里金 密度泛函理论 算法 化学 数学 计算化学 统计 离散数学 程序设计语言
作者
Robin Lawler,Yao-Hao Liu,Nessa Majaya,Omar Allam,Hyunchul Ju,Jin Young Kim,Seung Soon Jang
出处
期刊:Journal of Physical Chemistry A [American Chemical Society]
卷期号:125 (39): 8712-8722 被引量:23
标识
DOI:10.1021/acs.jpca.1c05031
摘要

In this study, we propose a novel method of pKa prediction in a diverse set of acids, which combines density functional theory (DFT) method with machine learning (ML) methods. First, the DFT method with B3LYP/6-31++G**/SM8 is used to predict pKa, yielding a mean absolute error of 1.85 pKa units. Subsequently, such pKa values predicted from the DFT method are employed as one of 10 molecular descriptors for developing ML models trained on experimental data. Kernel Ridge Regression (KRR), Gaussian Process Regression, and Artificial Neural Network are optimized using three Pipelines: Pipeline 1 involving only hyperparameter optimization (HPO), Pipeline 2 involving HPO followed by a relative contribution analysis (RCA) and recursive feature elimination (RFE), and Pipeline 3 involving HPO followed by RCA and RFE on an expanded set of composite features. Finally, it is demonstrated that KRR with Pipeline 3 yields optimal pKa prediction at an MAE of 0.60 log units. This algorithm was then utilized to predict the pKa of 37 novel acids. The two most important features were determined to be the number of hydrogen atoms in the molecule and the degree of oxidation of the acid. The predicted pKa values were documented for future reference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
淞淞于我完成签到 ,获得积分10
20秒前
闪闪小小完成签到 ,获得积分10
22秒前
单纯的小土豆完成签到 ,获得积分10
30秒前
wBw完成签到,获得积分0
40秒前
Young完成签到 ,获得积分10
41秒前
数乱了梨花完成签到 ,获得积分0
42秒前
阳光溪流完成签到 ,获得积分10
50秒前
55秒前
shacodow完成签到,获得积分10
58秒前
ll完成签到,获得积分10
1分钟前
瞿人雄完成签到,获得积分10
1分钟前
没心没肺完成签到,获得积分10
1分钟前
1002SHIB完成签到,获得积分10
1分钟前
nihaolaojiu完成签到,获得积分10
1分钟前
sheetung完成签到,获得积分10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
wlscj应助科研通管家采纳,获得20
1分钟前
麦田麦兜完成签到,获得积分10
1分钟前
司连喜完成签到,获得积分10
1分钟前
波西米亚完成签到,获得积分10
1分钟前
顺利毕业完成签到 ,获得积分10
1分钟前
S.S.N完成签到 ,获得积分10
1分钟前
orixero应助乐观海云采纳,获得30
1分钟前
小欣子完成签到 ,获得积分10
1分钟前
w婷完成签到 ,获得积分10
1分钟前
专注的觅云完成签到 ,获得积分10
1分钟前
1分钟前
健忘的晓小完成签到 ,获得积分10
1分钟前
庄怀逸完成签到 ,获得积分10
1分钟前
乐观海云发布了新的文献求助30
1分钟前
花花完成签到 ,获得积分10
1分钟前
果酱发布了新的文献求助10
1分钟前
lkc完成签到,获得积分10
1分钟前
取法乎上完成签到 ,获得积分10
1分钟前
943034197完成签到,获得积分10
2分钟前
yy完成签到 ,获得积分0
2分钟前
orixero应助果酱采纳,获得10
2分钟前
沉沉完成签到 ,获得积分0
2分钟前
一剑白完成签到 ,获得积分10
2分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347381
求助须知:如何正确求助?哪些是违规求助? 4481679
关于积分的说明 13947989
捐赠科研通 4379900
什么是DOI,文献DOI怎么找? 2406682
邀请新用户注册赠送积分活动 1399221
关于科研通互助平台的介绍 1372293