Safety-Critical Containment Maneuvering of Underactuated Autonomous Surface Vehicles Based on Neurodynamic Optimization With Control Barrier Functions

欠驱动 控制理论(社会学) 有界函数 计算机科学 遏制(计算机编程) 最优化问题 二次规划 控制工程 控制(管理) 数学优化 工程类 数学 人工智能 算法 程序设计语言 数学分析
作者
Nan Gu,Dan Wang,Zhouhua Peng,Jun Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 2882-2895 被引量:45
标识
DOI:10.1109/tnnls.2021.3110014
摘要

This article addresses the safety-critical containment maneuvering of multiple underactuated autonomous surface vehicles (ASVs) in the presence of multiple stationary/moving obstacles. In a complex marine environment, every ASV suffers from model uncertainties, external disturbances, and input constraints. A safety-critical control method is proposed for achieving a collision-free containment formation. Specifically, a fixed-time extended state observer is employed for estimating the model uncertainties and external disturbances. By estimating lumped disturbances in fixed time, nominal containment maneuvering control laws are designed in an Earth-fixed reference frame. Input-to-state safe control barrier functions (ISSf-CBFs) are constructed for mapping safety constraints on states to constraints on control inputs. A distributed quadratic optimization problem with the norm of control inputs as the objective function and ISSf-CBFs as constraints is formulated. A recurrent neural network-based neurodynamic optimization approach is adopted to solve the quadratic optimization problem for computing the forces and moments within the safety and input constraints in real time. It is proven that the error signals in the closed-loop control system are uniformly ultimately bounded and the multi-ASVs system is guaranteed for input-to-state safety. Simulation results are elaborated to substantiate the effectiveness of the proposed safety-critical control method for ASVs based on neurodynamic optimization with control barrier functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiuxuan100发布了新的文献求助10
1秒前
XL发布了新的文献求助10
1秒前
刘小孩完成签到,获得积分10
2秒前
Yzhe发布了新的文献求助30
3秒前
刘小小发布了新的文献求助10
3秒前
毒蕈碱发布了新的文献求助30
4秒前
慕青应助哈哈哈采纳,获得10
4秒前
4秒前
爆米花应助qazzzyy采纳,获得10
5秒前
6秒前
everglow完成签到,获得积分10
6秒前
7秒前
英俊的铭应助陌路孤星采纳,获得10
7秒前
qiuxuan100完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
9秒前
yatou5651应助曾泓跃采纳,获得10
10秒前
11秒前
共享精神应助无敌最俊朗采纳,获得20
12秒前
可爱妙芙关注了科研通微信公众号
12秒前
小高完成签到 ,获得积分10
12秒前
Jiaowen发布了新的文献求助10
13秒前
13秒前
shunlu发布了新的文献求助10
13秒前
14秒前
宋祝福完成签到 ,获得积分10
14秒前
kisaki完成签到,获得积分10
14秒前
lcm发布了新的文献求助10
14秒前
14秒前
15秒前
Lucas应助jianwu采纳,获得10
15秒前
Ava应助拾忆采纳,获得10
15秒前
guohezu发布了新的文献求助10
16秒前
iuhgnor发布了新的文献求助10
16秒前
16秒前
了了完成签到,获得积分10
16秒前
领导范儿应助积极囧采纳,获得10
17秒前
完美世界应助优雅的听兰采纳,获得10
18秒前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
The Oxford Handbook of Transcranial Stimulation (the second edition) 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3437106
求助须知:如何正确求助?哪些是违规求助? 3034244
关于积分的说明 8953808
捐赠科研通 2722167
什么是DOI,文献DOI怎么找? 1493095
科研通“疑难数据库(出版商)”最低求助积分说明 690140
邀请新用户注册赠送积分活动 686479