Guided Event Filtering: Synergy between Intensity Images and Neuromorphic Events for High Performance Imaging

计算机科学 人工智能 计算机视觉 事件(粒子物理) 噪音(视频) 神经形态工程学 高动态范围 帧速率 帧(网络) 机器人学 图像传感器 图像分辨率 实时计算 机器人 动态范围 图像(数学) 人工神经网络 电信 物理 量子力学
作者
Peiqi Duan,Zihao W. Wang,Boxin Shi,Oliver Cossairt,Tiejun Huang,Aggelos K. Katsaggelos
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-1 被引量:20
标识
DOI:10.1109/tpami.2021.3113344
摘要

Many visual and robotics tasks in real-world scenarios rely on robust handling of high speed motion and high dynamic range (HDR) with effectively high spatial resolution and low noise. Such stringent requirements, however, cannot be directly satisfied by a single imager or imaging modality, rather by multi-modal sensors with complementary advantages. In this paper, we address high performance imaging by exploring the synergy between traditional frame-based sensors with high spatial resolution and low sensor noise, and emerging event-based sensors with high speed and high dynamic range. We introduce a novel computational framework, termed Guided Event Filtering (GEF), to process these two streams of input data and output a stream of super-resolved yet noise-reduced events. To generate high quality events, GEF first registers the captured noisy events onto the guidance image plane according to our flow model. it then performs joint image filtering that inherits the mutual structure from both inputs. Lastly, GEF re-distributes the filtered event frame in the space-time volume while preserving the statistical characteristics of the original events. When the guidance images under-perform, GEF incorporates an event self-guiding mechanism that resorts to neighbor events for guidance. We demonstrate the benefits of GEF by applying the output high quality events to existing event-based algorithms across diverse application categories, including high speed object tracking, depth estimation, high frame-rate video synthesis, and super resolution/HDR/color image restoration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彪壮的绮梅应助kkk采纳,获得10
3秒前
3秒前
悠明夜月完成签到 ,获得积分10
3秒前
滔滔发布了新的文献求助10
5秒前
5秒前
慕容夜梅发布了新的文献求助10
6秒前
小赵小赵完成签到,获得积分10
6秒前
君君完成签到 ,获得积分10
7秒前
烟花应助xcf6653采纳,获得10
8秒前
多发文章完成签到,获得积分10
10秒前
11秒前
三张发布了新的文献求助10
11秒前
HJJHJH发布了新的文献求助100
12秒前
还好还好完成签到,获得积分10
13秒前
Jey完成签到,获得积分10
15秒前
完美世界应助科研通管家采纳,获得10
16秒前
16秒前
我是老大应助科研通管家采纳,获得10
16秒前
yanzu应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
16秒前
俏皮半烟应助科研通管家采纳,获得10
16秒前
pluto应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
pluto应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
pluto应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
还好还好发布了新的文献求助10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得10
18秒前
真实的勒应助科研通管家采纳,获得10
18秒前
善学以致用应助外向宛海采纳,获得10
18秒前
18秒前
隐形曼青应助杏梨采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
Lucas应助Snieno采纳,获得10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671764
求助须知:如何正确求助?哪些是违规求助? 3228378
关于积分的说明 9780106
捐赠科研通 2938766
什么是DOI,文献DOI怎么找? 1610218
邀请新用户注册赠送积分活动 760611
科研通“疑难数据库(出版商)”最低求助积分说明 736096