A method for well log data generation based on a spatio-temporal neural network

变通办法 钻孔 卷积神经网络 计算机科学 测井 数据挖掘 领域(数学) 人工神经网络 钥匙(锁) 模式识别(心理学) 人工智能 地质学 石油工程 数学 岩土工程 计算机安全 程序设计语言 纯数学
作者
Jun Wang,Junxing Cao,Jiachun You,Ming Cheng,Peng Zhou
出处
期刊:Journal of Geophysics and Engineering [IOP Publishing]
卷期号:18 (5): 700-711 被引量:19
标识
DOI:10.1093/jge/gxab046
摘要

Abstract Well logging helps geologists find hidden oil, natural gas and other resources. However, well log data are systematically insufficient because they can only be obtained by drilling, which involves costly and time-consuming field trials. Additionally, missing or distorted well log data are common in old oilfields owing to shutdowns, poor borehole conditions, damaged instruments and so on. As a workaround, pseudo-data can be generated from actual field data. In this study, we propose a spatio-temporal neural network (STNN) algorithm, which is built by leveraging the combined strengths of a convolutional neural network (CNN) and a long short-term memory network (LSTM). The STNN exploits the ability of the CNN to effectively extract features related to pseudo-well log data and the ability of the LSTM to extract the key features from well log data along the depth direction. The STNN method allows full consideration of the well log data trend with depth, the correlation across different log series and the actual depth accumulation effect. The method proved successful in predicting acoustic sonic log data from gamma-ray, density, compensated neutron, formation resistivity and borehole diameter logs. Results show that the proposed method achieves higher prediction accuracy because it takes into account the spatio-temporal information of well logs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
stars完成签到,获得积分10
1秒前
2秒前
2秒前
4秒前
4秒前
4秒前
研友_rLmNXn发布了新的文献求助10
6秒前
6秒前
赘婿应助神勇的梦凡采纳,获得10
6秒前
CodeCraft应助聪明紫山采纳,获得10
7秒前
qcf发布了新的文献求助10
8秒前
SYLH应助xinxin采纳,获得20
8秒前
1111发布了新的文献求助10
8秒前
8秒前
iieao完成签到,获得积分20
8秒前
烨坤完成签到 ,获得积分10
8秒前
子璇发布了新的文献求助10
9秒前
霸气大米完成签到,获得积分10
9秒前
早睡早起完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
11秒前
共享精神应助研友_rLmNXn采纳,获得10
13秒前
搞怪世德应助研友_rLmNXn采纳,获得10
13秒前
13秒前
李健应助研友_rLmNXn采纳,获得10
13秒前
搜集达人应助超级盼海采纳,获得10
13秒前
SYLH应助沉静的安青采纳,获得10
14秒前
15秒前
呆瓜完成签到,获得积分10
15秒前
16秒前
Owen应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
sjckn应助科研通管家采纳,获得30
17秒前
ding应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
二狗发布了新的文献求助10
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524003
关于积分的说明 11219349
捐赠科研通 3261424
什么是DOI,文献DOI怎么找? 1800654
邀请新用户注册赠送积分活动 879239
科研通“疑难数据库(出版商)”最低求助积分说明 807214