亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A method for well log data generation based on a spatio-temporal neural network

变通办法 钻孔 卷积神经网络 计算机科学 测井 数据挖掘 领域(数学) 人工神经网络 钥匙(锁) 模式识别(心理学) 人工智能 地质学 石油工程 数学 岩土工程 计算机安全 程序设计语言 纯数学
作者
Jun Wang,Junxing Cao,Jiachun You,Ming Cheng,Peng Zhou
出处
期刊:Journal of Geophysics and Engineering [Oxford University Press]
卷期号:18 (5): 700-711 被引量:19
标识
DOI:10.1093/jge/gxab046
摘要

Abstract Well logging helps geologists find hidden oil, natural gas and other resources. However, well log data are systematically insufficient because they can only be obtained by drilling, which involves costly and time-consuming field trials. Additionally, missing or distorted well log data are common in old oilfields owing to shutdowns, poor borehole conditions, damaged instruments and so on. As a workaround, pseudo-data can be generated from actual field data. In this study, we propose a spatio-temporal neural network (STNN) algorithm, which is built by leveraging the combined strengths of a convolutional neural network (CNN) and a long short-term memory network (LSTM). The STNN exploits the ability of the CNN to effectively extract features related to pseudo-well log data and the ability of the LSTM to extract the key features from well log data along the depth direction. The STNN method allows full consideration of the well log data trend with depth, the correlation across different log series and the actual depth accumulation effect. The method proved successful in predicting acoustic sonic log data from gamma-ray, density, compensated neutron, formation resistivity and borehole diameter logs. Results show that the proposed method achieves higher prediction accuracy because it takes into account the spatio-temporal information of well logs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanwan524完成签到 ,获得积分10
7秒前
CodeCraft应助phd采纳,获得10
14秒前
充电宝应助phd采纳,获得10
22秒前
29秒前
sailingluwl完成签到,获得积分10
32秒前
阿泽发布了新的文献求助10
33秒前
大个应助phd采纳,获得10
37秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
Una完成签到,获得积分10
1分钟前
矮小的向雪完成签到 ,获得积分10
1分钟前
phd发布了新的文献求助10
1分钟前
花开富贵完成签到 ,获得积分10
1分钟前
1分钟前
lei发布了新的文献求助10
2分钟前
Kevin完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
rose发布了新的文献求助20
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
lsl应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
卷卷完成签到 ,获得积分10
3分钟前
kuoping完成签到,获得积分0
3分钟前
3分钟前
小b亮完成签到 ,获得积分10
4分钟前
Echo完成签到,获得积分10
4分钟前
奇奇怪怪完成签到,获得积分10
4分钟前
fanhuaxuejin完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
yhh完成签到 ,获得积分10
4分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644764
求助须知:如何正确求助?哪些是违规求助? 4765318
关于积分的说明 15025565
捐赠科研通 4803089
什么是DOI,文献DOI怎么找? 2567925
邀请新用户注册赠送积分活动 1525479
关于科研通互助平台的介绍 1485004