Integration of Multi-Omics Data Using Probabilistic Graph Models and External Knowledge

计算机科学 数据集成 贝叶斯网络 系统生物学 生物网络 概率逻辑 机器学习 计算生物学 数据挖掘 人工智能 生物
作者
Bridget A. Tripp,Hasan H. Otu
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:17 (1): 37-47 被引量:4
标识
DOI:10.2174/1574893616666210906141545
摘要

Background: High-throughput sequencing technologies have revolutionized the ability to perform systems-level biology and elucidate molecular mechanisms of disease through the comprehensive characterization of different layers of biological information. Integration of these heterogeneous layers can provide insight into the underlying biology but is challenged by modeling complex interactions. Objective: We introduce OBaNK: omics integration using Bayesian networks and external knowledge, an algorithm to model interactions between heterogeneous high-dimensional biological data to elucidate complex functional clusters and emergent relationships associated with an observed phenotype. Method: Using Bayesian network learning, we modeled the statistical dependencies and interactions between lipidomics, proteomics, and metabolomics data. The strength of a learned interaction between molecules was altered based on external knowledge. Results : Networks learned from synthetic datasets based on real pathways achieved an average area under the curve score of ~0.85, an improvement of ~0.23 from baseline methods. When applied to real multi-omics data collected during pregnancy, five distinct functional networks of heterogeneous biological data were identified, and the results were compared to other multi-omics integration approaches. Conclusion: OBaNK successfully improved the accuracy of learning interaction networks from data integrating external knowledge, identified heterogeneous functional networks from real data, and suggested potential novel interactions associated with the phenotype. These findings can guide future hypothesis generation. OBaNK source code is available at: https://github.com/bridgettripp/OBaNK.git, and a graphical user interface is available at: http://otulab.unl.edu/OBaNK.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
静jj发布了新的文献求助10
1秒前
chuhuibaba完成签到,获得积分20
1秒前
千空完成签到,获得积分10
1秒前
2秒前
5123发布了新的文献求助10
2秒前
令狐晓博完成签到,获得积分0
2秒前
haki完成签到,获得积分10
3秒前
3秒前
重要问筠完成签到,获得积分10
3秒前
AronHUANG完成签到,获得积分10
3秒前
for_abSCI完成签到,获得积分10
4秒前
健壮的凝冬完成签到 ,获得积分10
4秒前
5秒前
香蕉觅云应助拌拌采纳,获得10
5秒前
Ding应助维时采纳,获得10
5秒前
千空发布了新的文献求助10
6秒前
怕孤单的若颜完成签到,获得积分10
6秒前
6秒前
7秒前
15297657686完成签到,获得积分10
7秒前
Max完成签到,获得积分10
8秒前
SherlockJia完成签到,获得积分10
8秒前
callmecjh完成签到,获得积分10
9秒前
5123完成签到,获得积分10
9秒前
阿良完成签到,获得积分10
9秒前
伍六七完成签到,获得积分10
10秒前
YOYOYO完成签到,获得积分10
10秒前
10秒前
彳亍完成签到,获得积分10
10秒前
MRIFFF完成签到,获得积分10
10秒前
Linda完成签到 ,获得积分10
11秒前
孙燕应助赵宇宙采纳,获得10
11秒前
小圆子完成签到,获得积分10
11秒前
11秒前
富强民主发布了新的文献求助20
11秒前
12秒前
burno1112完成签到,获得积分10
13秒前
121完成签到,获得积分10
13秒前
忧郁小蘑菇完成签到,获得积分10
13秒前
今何在完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015970
求助须知:如何正确求助?哪些是违规求助? 3555964
关于积分的说明 11319479
捐赠科研通 3289040
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044