Integration of Multi-Omics Data Using Probabilistic Graph Models and External Knowledge

计算机科学 数据集成 贝叶斯网络 系统生物学 生物网络 概率逻辑 机器学习 计算生物学 数据挖掘 人工智能 生物
作者
Bridget A. Tripp,Hasan H. Otu
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:17 (1): 37-47 被引量:4
标识
DOI:10.2174/1574893616666210906141545
摘要

Background: High-throughput sequencing technologies have revolutionized the ability to perform systems-level biology and elucidate molecular mechanisms of disease through the comprehensive characterization of different layers of biological information. Integration of these heterogeneous layers can provide insight into the underlying biology but is challenged by modeling complex interactions. Objective: We introduce OBaNK: omics integration using Bayesian networks and external knowledge, an algorithm to model interactions between heterogeneous high-dimensional biological data to elucidate complex functional clusters and emergent relationships associated with an observed phenotype. Method: Using Bayesian network learning, we modeled the statistical dependencies and interactions between lipidomics, proteomics, and metabolomics data. The strength of a learned interaction between molecules was altered based on external knowledge. Results : Networks learned from synthetic datasets based on real pathways achieved an average area under the curve score of ~0.85, an improvement of ~0.23 from baseline methods. When applied to real multi-omics data collected during pregnancy, five distinct functional networks of heterogeneous biological data were identified, and the results were compared to other multi-omics integration approaches. Conclusion: OBaNK successfully improved the accuracy of learning interaction networks from data integrating external knowledge, identified heterogeneous functional networks from real data, and suggested potential novel interactions associated with the phenotype. These findings can guide future hypothesis generation. OBaNK source code is available at: https://github.com/bridgettripp/OBaNK.git, and a graphical user interface is available at: http://otulab.unl.edu/OBaNK.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助MQRR采纳,获得10
1秒前
漂亮的千秋完成签到,获得积分20
1秒前
DragonAca发布了新的文献求助10
1秒前
魔幻海豚完成签到 ,获得积分10
3秒前
4秒前
Hello应助daifei采纳,获得10
4秒前
5秒前
diu应助高高采纳,获得10
5秒前
6秒前
6秒前
squrreil完成签到,获得积分10
7秒前
7秒前
荔枝多酚完成签到,获得积分10
7秒前
英俊的铭应助xingyan采纳,获得10
10秒前
Fury发布了新的文献求助10
10秒前
DragonAca完成签到,获得积分10
10秒前
10秒前
狂野的念波完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
14秒前
xiaoleeyu完成签到,获得积分10
15秒前
顺利的半蕾完成签到,获得积分10
16秒前
企鹅完成签到,获得积分10
16秒前
hhhh发布了新的文献求助10
17秒前
洁净山灵完成签到,获得积分20
17秒前
17秒前
cultromics完成签到,获得积分10
17秒前
Jasper应助儒雅沛蓝采纳,获得10
20秒前
英姑应助cultromics采纳,获得10
21秒前
21秒前
23秒前
JinGN完成签到,获得积分10
24秒前
研友_VZG7GZ应助云山采纳,获得10
24秒前
25秒前
..发布了新的文献求助10
26秒前
zhu完成签到,获得积分10
26秒前
鲤鱼冰海完成签到,获得积分10
29秒前
XPR完成签到 ,获得积分10
29秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242882
求助须知:如何正确求助?哪些是违规求助? 2887018
关于积分的说明 8245738
捐赠科研通 2555585
什么是DOI,文献DOI怎么找? 1383717
科研通“疑难数据库(出版商)”最低求助积分说明 649728
邀请新用户注册赠送积分活动 625625