Integration of Multi-Omics Data Using Probabilistic Graph Models and External Knowledge

计算机科学 数据集成 贝叶斯网络 系统生物学 生物网络 概率逻辑 机器学习 计算生物学 数据挖掘 人工智能 生物
作者
Bridget A. Tripp,Hasan H. Otu
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:17 (1): 37-47 被引量:4
标识
DOI:10.2174/1574893616666210906141545
摘要

Background: High-throughput sequencing technologies have revolutionized the ability to perform systems-level biology and elucidate molecular mechanisms of disease through the comprehensive characterization of different layers of biological information. Integration of these heterogeneous layers can provide insight into the underlying biology but is challenged by modeling complex interactions. Objective: We introduce OBaNK: omics integration using Bayesian networks and external knowledge, an algorithm to model interactions between heterogeneous high-dimensional biological data to elucidate complex functional clusters and emergent relationships associated with an observed phenotype. Method: Using Bayesian network learning, we modeled the statistical dependencies and interactions between lipidomics, proteomics, and metabolomics data. The strength of a learned interaction between molecules was altered based on external knowledge. Results : Networks learned from synthetic datasets based on real pathways achieved an average area under the curve score of ~0.85, an improvement of ~0.23 from baseline methods. When applied to real multi-omics data collected during pregnancy, five distinct functional networks of heterogeneous biological data were identified, and the results were compared to other multi-omics integration approaches. Conclusion: OBaNK successfully improved the accuracy of learning interaction networks from data integrating external knowledge, identified heterogeneous functional networks from real data, and suggested potential novel interactions associated with the phenotype. These findings can guide future hypothesis generation. OBaNK source code is available at: https://github.com/bridgettripp/OBaNK.git, and a graphical user interface is available at: http://otulab.unl.edu/OBaNK.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Nothing发布了新的文献求助10
1秒前
善学以致用应助饭饭采纳,获得10
2秒前
3秒前
十三完成签到 ,获得积分10
9秒前
浮游应助Kevin采纳,获得10
9秒前
橙子雨发布了新的文献求助10
9秒前
久久完成签到 ,获得积分10
11秒前
AA18236931952发布了新的文献求助10
14秒前
张琨完成签到 ,获得积分10
15秒前
无情的素完成签到,获得积分10
18秒前
科研通AI6应助现代水卉采纳,获得10
24秒前
Nothing发布了新的文献求助10
31秒前
Zewen_Li应助迈尔馬采纳,获得10
35秒前
科研通AI6应助Jere采纳,获得20
36秒前
小尹完成签到 ,获得积分10
39秒前
科研通AI6应助Xjx6519采纳,获得10
40秒前
lxl发布了新的文献求助10
42秒前
Hello应助禹平露采纳,获得10
43秒前
51秒前
Lancet发布了新的文献求助20
52秒前
森禾完成签到 ,获得积分10
55秒前
55秒前
上官若男应助曾经的帅哥采纳,获得10
58秒前
陈星翰完成签到,获得积分10
58秒前
stumm发布了新的文献求助10
1分钟前
Chief完成签到,获得积分0
1分钟前
1分钟前
1分钟前
奋斗成风发布了新的文献求助10
1分钟前
浮游应助Kevin采纳,获得10
1分钟前
浮游应助扬灵兮采纳,获得10
1分钟前
安详的冷安完成签到,获得积分10
1分钟前
烟花应助keke采纳,获得10
1分钟前
还行吧完成签到 ,获得积分10
1分钟前
俏皮的安萱完成签到 ,获得积分10
1分钟前
材袅完成签到,获得积分10
1分钟前
1分钟前
盐焗鱼丸完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557614
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668844
捐赠科研通 4584126
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459523