Focal Self-attention for Local-Global Interactions in Vision Transformers

心理学 计算机科学 人工智能 认知科学
作者
Jianwei Yang,Chunyuan Li,Pengchuan Zhang,Xiyang Dai,Bin Xiao,Yuan Liu,Jianfeng Gao
出处
期刊:Cornell University - arXiv 被引量:143
标识
DOI:10.48550/arxiv.2107.00641
摘要

Recently, Vision Transformer and its variants have shown great promise on various computer vision tasks. The ability of capturing short- and long-range visual dependencies through self-attention is arguably the main source for the success. But it also brings challenges due to quadratic computational overhead, especially for the high-resolution vision tasks (e.g., object detection). In this paper, we present focal self-attention, a new mechanism that incorporates both fine-grained local and coarse-grained global interactions. Using this new mechanism, each token attends the closest surrounding tokens at fine granularity but the tokens far away at coarse granularity, and thus can capture both short- and long-range visual dependencies efficiently and effectively. With focal self-attention, we propose a new variant of Vision Transformer models, called Focal Transformer, which achieves superior performance over the state-of-the-art vision Transformers on a range of public image classification and object detection benchmarks. In particular, our Focal Transformer models with a moderate size of 51.1M and a larger size of 89.8M achieve 83.5 and 83.8 Top-1 accuracy, respectively, on ImageNet classification at 224x224 resolution. Using Focal Transformers as the backbones, we obtain consistent and substantial improvements over the current state-of-the-art Swin Transformers for 6 different object detection methods trained with standard 1x and 3x schedules. Our largest Focal Transformer yields 58.7/58.9 box mAPs and 50.9/51.3 mask mAPs on COCO mini-val/test-dev, and 55.4 mIoU on ADE20K for semantic segmentation, creating new SoTA on three of the most challenging computer vision tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx发布了新的文献求助10
1秒前
要减肥金鑫完成签到,获得积分20
1秒前
Inory007发布了新的文献求助10
1秒前
CipherSage应助佳佳采纳,获得10
1秒前
1秒前
weitaiyy完成签到,获得积分10
1秒前
忽晚完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
FF发布了新的文献求助10
3秒前
3秒前
yww发布了新的文献求助10
3秒前
3秒前
wanci应助坚强的严青采纳,获得10
4秒前
6秒前
6秒前
花花发布了新的文献求助10
7秒前
淞33发布了新的文献求助10
7秒前
Kem发布了新的文献求助10
7秒前
稳重诗珊发布了新的文献求助10
8秒前
柳絮旭完成签到 ,获得积分10
8秒前
Parsifal发布了新的文献求助30
9秒前
11秒前
wuyuan完成签到,获得积分10
11秒前
11秒前
FF完成签到,获得积分10
12秒前
依帕尔完成签到,获得积分20
12秒前
mm发布了新的文献求助10
12秒前
HELPMEPLZ发布了新的文献求助10
13秒前
善学以致用应助司佳雨采纳,获得10
13秒前
细雨带风吹完成签到,获得积分10
14秒前
柠觉呢发布了新的文献求助10
15秒前
15秒前
16秒前
shinn发布了新的文献求助10
18秒前
游大侠完成签到,获得积分10
18秒前
xx完成签到,获得积分20
19秒前
量子星尘发布了新的文献求助10
19秒前
Zx_1993应助科研小霖采纳,获得20
20秒前
AN发布了新的文献求助30
21秒前
jia发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594094
求助须知:如何正确求助?哪些是违规求助? 4679802
关于积分的说明 14811596
捐赠科研通 4645803
什么是DOI,文献DOI怎么找? 2534749
邀请新用户注册赠送积分活动 1502769
关于科研通互助平台的介绍 1469452