Focal Self-attention for Local-Global Interactions in Vision Transformers

心理学 计算机科学 人工智能 认知科学
作者
Jianwei Yang,Chunyuan Li,Pengchuan Zhang,Xiyang Dai,Bin Xiao,Yuan Liu,Jianfeng Gao
出处
期刊:Cornell University - arXiv 被引量:143
标识
DOI:10.48550/arxiv.2107.00641
摘要

Recently, Vision Transformer and its variants have shown great promise on various computer vision tasks. The ability of capturing short- and long-range visual dependencies through self-attention is arguably the main source for the success. But it also brings challenges due to quadratic computational overhead, especially for the high-resolution vision tasks (e.g., object detection). In this paper, we present focal self-attention, a new mechanism that incorporates both fine-grained local and coarse-grained global interactions. Using this new mechanism, each token attends the closest surrounding tokens at fine granularity but the tokens far away at coarse granularity, and thus can capture both short- and long-range visual dependencies efficiently and effectively. With focal self-attention, we propose a new variant of Vision Transformer models, called Focal Transformer, which achieves superior performance over the state-of-the-art vision Transformers on a range of public image classification and object detection benchmarks. In particular, our Focal Transformer models with a moderate size of 51.1M and a larger size of 89.8M achieve 83.5 and 83.8 Top-1 accuracy, respectively, on ImageNet classification at 224x224 resolution. Using Focal Transformers as the backbones, we obtain consistent and substantial improvements over the current state-of-the-art Swin Transformers for 6 different object detection methods trained with standard 1x and 3x schedules. Our largest Focal Transformer yields 58.7/58.9 box mAPs and 50.9/51.3 mask mAPs on COCO mini-val/test-dev, and 55.4 mIoU on ADE20K for semantic segmentation, creating new SoTA on three of the most challenging computer vision tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sheila完成签到 ,获得积分10
刚刚
sweetbearm应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
NN应助科研通管家采纳,获得10
刚刚
1秒前
英姑应助科研通管家采纳,获得10
1秒前
36456657应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
prosperp应助科研通管家采纳,获得20
1秒前
打打应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
2秒前
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
执着夏岚完成签到 ,获得积分10
2秒前
CipherSage应助苏州小北采纳,获得10
2秒前
www完成签到,获得积分20
3秒前
汉关发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
lixiangrui110发布了新的文献求助10
5秒前
善学以致用应助楚岸采纳,获得10
6秒前
cilan发布了新的文献求助10
6秒前
6秒前
卡卡发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
李李完成签到,获得积分10
8秒前
静静子发布了新的文献求助10
8秒前
fy207完成签到,获得积分10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808