Focal Self-attention for Local-Global Interactions in Vision Transformers

心理学 计算机科学 人工智能 认知科学
作者
Jianwei Yang,Chunyuan Li,Pengchuan Zhang,Xiyang Dai,Bin Xiao,Yuan Liu,Jianfeng Gao
出处
期刊:Cornell University - arXiv 被引量:143
标识
DOI:10.48550/arxiv.2107.00641
摘要

Recently, Vision Transformer and its variants have shown great promise on various computer vision tasks. The ability of capturing short- and long-range visual dependencies through self-attention is arguably the main source for the success. But it also brings challenges due to quadratic computational overhead, especially for the high-resolution vision tasks (e.g., object detection). In this paper, we present focal self-attention, a new mechanism that incorporates both fine-grained local and coarse-grained global interactions. Using this new mechanism, each token attends the closest surrounding tokens at fine granularity but the tokens far away at coarse granularity, and thus can capture both short- and long-range visual dependencies efficiently and effectively. With focal self-attention, we propose a new variant of Vision Transformer models, called Focal Transformer, which achieves superior performance over the state-of-the-art vision Transformers on a range of public image classification and object detection benchmarks. In particular, our Focal Transformer models with a moderate size of 51.1M and a larger size of 89.8M achieve 83.5 and 83.8 Top-1 accuracy, respectively, on ImageNet classification at 224x224 resolution. Using Focal Transformers as the backbones, we obtain consistent and substantial improvements over the current state-of-the-art Swin Transformers for 6 different object detection methods trained with standard 1x and 3x schedules. Our largest Focal Transformer yields 58.7/58.9 box mAPs and 50.9/51.3 mask mAPs on COCO mini-val/test-dev, and 55.4 mIoU on ADE20K for semantic segmentation, creating new SoTA on three of the most challenging computer vision tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Smiles发布了新的文献求助10
刚刚
左丘世立发布了新的文献求助10
1秒前
3秒前
4秒前
战斗暴龙兽完成签到,获得积分10
6秒前
陈梦鼠发布了新的文献求助10
9秒前
9秒前
彳亍1117应助左丘世立采纳,获得10
10秒前
兜兜发布了新的文献求助20
10秒前
Smiles完成签到,获得积分10
11秒前
11秒前
小马甲应助龚成明采纳,获得10
12秒前
爱吃饭的黄哥完成签到,获得积分10
13秒前
科研通AI2S应助Lewis采纳,获得10
16秒前
16秒前
romme完成签到,获得积分10
18秒前
19秒前
爱撒娇的鱼应助gtgyh采纳,获得10
21秒前
Vegetable_Dog完成签到,获得积分10
22秒前
小七发布了新的文献求助10
22秒前
Vincent发布了新的文献求助10
23秒前
索奎发布了新的文献求助10
23秒前
优雅灵波完成签到,获得积分10
24秒前
丫丫完成签到 ,获得积分10
27秒前
Hello应助Maria采纳,获得10
29秒前
7777777完成签到,获得积分10
30秒前
30秒前
Vegetable_Dog发布了新的文献求助10
31秒前
31秒前
郑波涛发布了新的文献求助10
33秒前
ddddd完成签到,获得积分10
33秒前
索奎完成签到 ,获得积分10
35秒前
龚成明发布了新的文献求助10
36秒前
37秒前
桔梗花开完成签到,获得积分10
38秒前
NZH发布了新的文献求助20
38秒前
kk完成签到,获得积分10
40秒前
暗夜轰炸机完成签到,获得积分20
40秒前
桂花载酒完成签到,获得积分10
45秒前
郑波涛完成签到,获得积分10
47秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789630
关于积分的说明 7791721
捐赠科研通 2445972
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079