Focal Self-attention for Local-Global Interactions in Vision Transformers

心理学 计算机科学 人工智能 认知科学
作者
Jianwei Yang,Chunyuan Li,Pengchuan Zhang,Xiyang Dai,Bin Xiao,Yuan Liu,Jianfeng Gao
出处
期刊:Cornell University - arXiv 被引量:143
标识
DOI:10.48550/arxiv.2107.00641
摘要

Recently, Vision Transformer and its variants have shown great promise on various computer vision tasks. The ability of capturing short- and long-range visual dependencies through self-attention is arguably the main source for the success. But it also brings challenges due to quadratic computational overhead, especially for the high-resolution vision tasks (e.g., object detection). In this paper, we present focal self-attention, a new mechanism that incorporates both fine-grained local and coarse-grained global interactions. Using this new mechanism, each token attends the closest surrounding tokens at fine granularity but the tokens far away at coarse granularity, and thus can capture both short- and long-range visual dependencies efficiently and effectively. With focal self-attention, we propose a new variant of Vision Transformer models, called Focal Transformer, which achieves superior performance over the state-of-the-art vision Transformers on a range of public image classification and object detection benchmarks. In particular, our Focal Transformer models with a moderate size of 51.1M and a larger size of 89.8M achieve 83.5 and 83.8 Top-1 accuracy, respectively, on ImageNet classification at 224x224 resolution. Using Focal Transformers as the backbones, we obtain consistent and substantial improvements over the current state-of-the-art Swin Transformers for 6 different object detection methods trained with standard 1x and 3x schedules. Our largest Focal Transformer yields 58.7/58.9 box mAPs and 50.9/51.3 mask mAPs on COCO mini-val/test-dev, and 55.4 mIoU on ADE20K for semantic segmentation, creating new SoTA on three of the most challenging computer vision tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asdfghjkl发布了新的文献求助10
刚刚
chopin完成签到,获得积分10
1秒前
1秒前
Lrangrang完成签到,获得积分10
1秒前
疯院士完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助Starry采纳,获得30
3秒前
JamesPei应助阿圆采纳,获得10
4秒前
exijiedewo完成签到,获得积分10
5秒前
liars完成签到 ,获得积分10
6秒前
Lrangrang发布了新的文献求助10
6秒前
6秒前
害怕的擎宇完成签到,获得积分10
6秒前
8秒前
9秒前
Vivian完成签到 ,获得积分10
10秒前
13秒前
大威德完成签到,获得积分10
15秒前
狂奔的哈士奇完成签到,获得积分10
15秒前
527发布了新的文献求助10
15秒前
16秒前
小蘑菇应助LUK_采纳,获得10
16秒前
陈陈发布了新的文献求助10
17秒前
完美世界应助三木足球采纳,获得10
17秒前
呼安给呼安的求助进行了留言
17秒前
17秒前
18秒前
18秒前
zhangyu应助甜蜜的物语采纳,获得10
18秒前
19秒前
乐乐应助我不要采纳,获得20
20秒前
星空发布了新的文献求助10
21秒前
SciGPT应助暮秋采纳,获得10
22秒前
22秒前
22秒前
陈文娟发布了新的文献求助30
23秒前
香蕉觅云应助HHH采纳,获得10
23秒前
Uni完成签到,获得积分20
24秒前
细心水绿发布了新的文献求助10
24秒前
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998449
求助须知:如何正确求助?哪些是违规求助? 3537924
关于积分的说明 11272900
捐赠科研通 3276966
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883819
科研通“疑难数据库(出版商)”最低求助积分说明 810020