Mechanical Properties Test and Strength Prediction on Basalt Fiber Reinforced Recycled Concrete

玄武岩纤维 材料科学 抗弯强度 抗压强度 极限抗拉强度 复合材料 骨料(复合) 纤维 混凝土性能 凝聚力(化学) 有机化学 化学
作者
Min Huang,Yuru Zhao,Haonan Wang,Shihao Lin
出处
期刊:Advances in Civil Engineering [Hindawi Limited]
卷期号:2021: 1-10 被引量:9
标识
DOI:10.1155/2021/6673416
摘要

In order to study the mechanical properties of basalt fiber reinforced recycled concrete (BFRRC), nine groups of tests are designed with three different replacement rates of recycled aggregates (40%, 70%, and 100%) and volume fraction of basalt fibers (0.1%, 0.2%, and 0.3%). Another group of tests on ordinary concrete without fiber and recycled aggregate is used as comparison. The workability, cubic compressive strength, splitting tensile strength, and flexural strength of BFRRC are tested and analyzed. The effects of fiber content and recycled aggregate replacement ratio on the mechanical properties of concrete are studied. The strength development of fiber reinforced recycled concrete is predicted by using convolution neural network theory. The test results show that the fluidity of concrete mixtures decreases, while the cohesion and water retention are better than ordinary concrete with the increase of replacement ratio of recycled coarse aggregate and basalt fiber content. The compressive and flexural strength of recycled concrete first decrease and then increase slightly, while the splitting tensile strength of recycled concrete continue to decrease with the increase of replacement ratio of recycled aggregate. The flexural strength and splitting tensile strength of recycled concrete are obviously improved after adding basalt fiber, while the compressive strength increases first and then decreases with the increase of fiber content. A convolution neural network model for predicting the strength of basalt fiber reinforced recycled concrete is established. The predicted results are very close to the measured values and can be used as reference for the mix ratio of basalt fiber reinforced recycled concrete.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏天来了发布了新的文献求助10
1秒前
充电宝应助跳跃凡桃采纳,获得10
2秒前
梅川枯枝发布了新的文献求助10
5秒前
7秒前
小杰发布了新的文献求助10
8秒前
8秒前
维生素CCC完成签到 ,获得积分10
9秒前
9秒前
我叫马友才呀完成签到,获得积分10
10秒前
唐政清发布了新的文献求助10
11秒前
大模型应助Jin采纳,获得10
13秒前
14秒前
温暖白筠发布了新的文献求助10
15秒前
ethan2801完成签到,获得积分10
15秒前
15秒前
16秒前
科研通AI5应助荀彧采纳,获得10
16秒前
17秒前
17秒前
科研通AI5应助唐政清采纳,获得10
17秒前
研友_nqrKQZ发布了新的文献求助30
17秒前
Orange应助缓慢的芸遥采纳,获得10
18秒前
科研通AI5应助wxyllxx采纳,获得10
18秒前
19秒前
言不得语发布了新的文献求助10
21秒前
冷艳迎波完成签到,获得积分10
21秒前
21秒前
22秒前
温暖白筠完成签到,获得积分10
22秒前
22秒前
pure123发布了新的文献求助10
24秒前
科研通AI5应助研友_nqrKQZ采纳,获得10
26秒前
健忘怜雪完成签到,获得积分10
26秒前
26秒前
852应助唐政清采纳,获得10
28秒前
28秒前
研友_VZG7GZ应助唐政清采纳,获得10
28秒前
上官若男应助唐政清采纳,获得10
28秒前
Lucas应助唐政清采纳,获得10
28秒前
科研通AI5应助唐政清采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565412
求助须知:如何正确求助?哪些是违规求助? 3138412
关于积分的说明 9426508
捐赠科研通 2838766
什么是DOI,文献DOI怎么找? 1560539
邀请新用户注册赠送积分活动 729695
科研通“疑难数据库(出版商)”最低求助积分说明 717569