Convolutional Neural Network–Based Deep Learning Model for Predicting Differential Suicidality in Depressive Patients Using Brain Generalized q-Sampling Imaging

自杀意念 人工智能 部分各向异性 深度学习 卷积神经网络 重性抑郁障碍 机器学习 心理学 毒物控制 临床心理学 精神科 计算机科学 医学 磁共振成像 自杀预防 磁共振弥散成像 认知 放射科 医疗急救
作者
Vincent Chin‐Hung Chen,Fu-Te Wong,Yuan‐Hsiung Tsai,Man Teng Cheok,Yi-Peng Eve Chang,Roger S. McIntyre,Jun‐Cheng Weng
出处
期刊:The Journal of Clinical Psychiatry [Physicians Postgraduate Press, Inc.]
卷期号:82 (2) 被引量:7
标识
DOI:10.4088/jcp.19m13225
摘要

Objective: Suicide is a priority health problem. Suicide assessment depends on imperfect clinician assessment with minimal ability to predict the risk of suicide. Machine learning/deep learning provides an opportunity to detect an individual at risk of suicide to a greater extent than clinician assessment. The present study aimed to use deep learning of structural magnetic resonance imaging (MRI) to create an algorithm for detecting suicidal ideation and suicidal attempts. Methods: We recruited 4 groups comprising a total of 186 participants: 33 depressive patients with suicide attempt (SA), 41 depressive patients with suicidal ideation (SI), 54 depressive patients without suicidal thoughts (DP), and 58 healthy controls (HCs). The confirmation of depressive disorder, SA and SI was based on psychiatrists’ diagnosis and Mini-International Neuropsychiatric Interview (MINI) interviews. In the generalized q-sampling imaging (GQI) dataset, indices of generalized fractional anisotropy (GFA), the isotropic value of the orientation distribution function (ISO), and normalized quantitative anisotropy (NQA) were separately trained in convolutional neural network (CNN)–based deep learning and DenseNet models. Results: From the results of 5-fold cross-validation, the best accuracies of the CNN classifier for predicting SA, SI, and DP against HCs were 0.916, 0.792, and 0.589, respectively. In SA-ISO, DenseNet outperformed the simple CNNs with a best accuracy from 5-fold cross-validation of 0.937. In SA-NQA, the best accuracy was 0.915. Conclusions: The results showed that a deep learning method based on structural MRI can effectively detect individuals at different levels of suicide risk, from depression to suicidal ideation and attempted suicide. Further studies from different populations, larger sample sizes, and prospective follow-up studies are warranted to confirm the utility of deep learning methods for suicide prevention and intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
寂梦发布了新的文献求助10
1秒前
为三而舞发布了新的文献求助10
2秒前
4秒前
SciGPT应助无心的太君采纳,获得10
4秒前
何嘻嘻发布了新的文献求助10
5秒前
Loooong应助Supreme采纳,获得10
5秒前
10秒前
arisfield完成签到,获得积分10
10秒前
yi应助轻松狗采纳,获得20
11秒前
daisyyy完成签到,获得积分10
14秒前
愉快凌晴完成签到,获得积分10
14秒前
风中冰蝶完成签到,获得积分10
14秒前
星辰大海应助何嘻嘻采纳,获得10
15秒前
Tttthhh发布了新的文献求助10
17秒前
共享精神应助张堡采纳,获得10
17秒前
萧水白应助luluyang采纳,获得10
17秒前
18秒前
Krismile应助敖恶采纳,获得10
18秒前
18秒前
齐齐完成签到,获得积分10
19秒前
美好寒梦完成签到,获得积分10
20秒前
科研通AI2S应助舒适的冰凡采纳,获得10
20秒前
开心的母鸡完成签到,获得积分10
22秒前
APRIL_SKY完成签到,获得积分10
23秒前
God完成签到,获得积分10
24秒前
传奇3应助hhhhhhhh采纳,获得10
25秒前
26秒前
27秒前
嘎嘎嘎嘎发布了新的文献求助10
29秒前
充电宝应助怕黑南琴采纳,获得10
29秒前
lyl19880908应助为三而舞采纳,获得10
30秒前
我是老大应助NemoNIE采纳,获得10
31秒前
颖中竹子完成签到,获得积分10
31秒前
学术通zzz应助就好采纳,获得20
31秒前
VDC应助敖恶采纳,获得30
32秒前
梅子发布了新的文献求助10
32秒前
铁臂阿童木完成签到,获得积分10
35秒前
36秒前
38秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
纳米碳材料 400
The analysis and solution of partial differential equations 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3336833
求助须知:如何正确求助?哪些是违规求助? 2965415
关于积分的说明 8619658
捐赠科研通 2644509
什么是DOI,文献DOI怎么找? 1448026
科研通“疑难数据库(出版商)”最低求助积分说明 670923
邀请新用户注册赠送积分活动 659513