清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Convolutional Neural Network–Based Deep Learning Model for Predicting Differential Suicidality in Depressive Patients Using Brain Generalized q-Sampling Imaging

人工智能 深度学习 卷积神经网络 采样(信号处理) 神经影像学 心理学 模式识别(心理学) 计算机科学 神经科学 计算机视觉 滤波器(信号处理)
作者
Vincent Chin‐Hung Chen,Fu-Te Wong,Yuan‐Hsiung Tsai,Man Teng Cheok,Yi-Peng Eve Chang,Roger S. McIntyre,Jun‐Cheng Weng
出处
期刊:The Journal of Clinical Psychiatry [Physicians Postgraduate Press, Inc.]
卷期号:82 (2) 被引量:11
标识
DOI:10.4088/jcp.19m13225
摘要

Objective: Suicide is a priority health problem. Suicide assessment depends on imperfect clinician assessment with minimal ability to predict the risk of suicide. Machine learning/deep learning provides an opportunity to detect an individual at risk of suicide to a greater extent than clinician assessment. The present study aimed to use deep learning of structural magnetic resonance imaging (MRI) to create an algorithm for detecting suicidal ideation and suicidal attempts. Methods: We recruited 4 groups comprising a total of 186 participants: 33 depressive patients with suicide attempt (SA), 41 depressive patients with suicidal ideation (SI), 54 depressive patients without suicidal thoughts (DP), and 58 healthy controls (HCs). The confirmation of depressive disorder, SA and SI was based on psychiatrists' diagnosis and Mini-International Neuropsychiatric Interview (MINI) interviews. In the generalized q-sampling imaging (GQI) dataset, indices of generalized fractional anisotropy (GFA), the isotropic value of the orientation distribution function (ISO), and normalized quantitative anisotropy (NQA) were separately trained in convolutional neural network (CNN)–based deep learning and DenseNet models. Results: From the results of 5-fold cross-validation, the best accuracies of the CNN classifier for predicting SA, SI, and DP against HCs were 0.916, 0.792, and 0.589, respectively. In SA-ISO, DenseNet outperformed the simple CNNs with a best accuracy from 5-fold cross-validation of 0.937. In SA-NQA, the best accuracy was 0.915. Conclusions: The results showed that a deep learning method based on structural MRI can effectively detect individuals at different levels of suicide risk, from depression to suicidal ideation and attempted suicide. Further studies from different populations, larger sample sizes, and prospective follow-up studies are warranted to confirm the utility of deep learning methods for suicide prevention and intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稻子完成签到 ,获得积分10
4秒前
18秒前
Rayoo发布了新的文献求助10
24秒前
紫金之巅完成签到 ,获得积分10
26秒前
dd完成签到 ,获得积分10
32秒前
风清扬应助科研通管家采纳,获得10
32秒前
玩命的无春完成签到 ,获得积分10
36秒前
风华正茂发布了新的文献求助10
40秒前
QCB完成签到 ,获得积分10
40秒前
bo完成签到 ,获得积分10
58秒前
情怀应助pngyyyy采纳,获得10
1分钟前
如意的馒头完成签到 ,获得积分10
1分钟前
Akim应助小婷君采纳,获得30
1分钟前
阿明完成签到,获得积分10
1分钟前
1分钟前
chcmy完成签到 ,获得积分0
1分钟前
小婷君发布了新的文献求助30
1分钟前
badgerwithfisher完成签到,获得积分10
2分钟前
大个应助小婷君采纳,获得10
2分钟前
ailemonmint完成签到 ,获得积分10
2分钟前
吕嫣娆完成签到 ,获得积分10
2分钟前
Artin完成签到,获得积分10
2分钟前
ys1008完成签到,获得积分10
2分钟前
文献蚂蚁完成签到,获得积分10
2分钟前
真的OK完成签到,获得积分10
2分钟前
洋芋饭饭完成签到,获得积分10
2分钟前
美满惜寒完成签到,获得积分10
2分钟前
朝夕之晖完成签到,获得积分10
2分钟前
xiaowuge完成签到 ,获得积分10
2分钟前
2分钟前
小婷君发布了新的文献求助10
2分钟前
guoguo完成签到,获得积分10
3分钟前
李爱国应助小婷君采纳,获得10
3分钟前
科研通AI2S应助Rayoo采纳,获得10
3分钟前
3分钟前
3分钟前
pngyyyy发布了新的文献求助10
3分钟前
王翎力完成签到,获得积分10
3分钟前
毛毛完成签到,获得积分10
3分钟前
相南相北完成签到 ,获得积分10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495278
关于积分的说明 11076026
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783275
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839