Logarithmic Norm Regularized Low-Rank Factorization for Matrix and Tensor Completion

数学 矩阵范数 低秩近似 对数 矩阵完成 秩(图论) 矩阵分解 算法 规范(哲学) 应用数学 数学优化 张量(固有定义) 纯数学 高斯分布 组合数学 数学分析 量子力学 特征向量 物理 政治学 法学
作者
Lin Chen,Xue Jiang,Xingzhao Liu,Zhixin Zhou
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 3434-3449 被引量:40
标识
DOI:10.1109/tip.2021.3061908
摘要

Matrix and tensor completion aim to recover the incomplete two- and higher-dimensional observations using the low-rank property. Conventional techniques usually minimize the convex surrogate of rank (such as the nuclear norm), which, however, leads to the suboptimal solution for the low-rank recovery. In this paper, we propose a new definition of matrix/tensor logarithmic norm to induce a sparsity-driven surrogate for rank. More importantly, the factor matrix/tensor norm surrogate theorems are derived, which are capable of factoring the norm of large-scale matrix/tensor into those of small-scale matrices/tensors equivalently. Based upon surrogate theorems, we propose two new algorithms called Logarithmic norm Regularized Matrix Factorization (LRMF) and Logarithmic norm Regularized Tensor Factorization (LRTF). These two algorithms incorporate the logarithmic norm regularization with the matrix/tensor factorization and hence achieve more accurate low-rank approximation and high computational efficiency. The resulting optimization problems are solved using the framework of alternating minimization with the proof of convergence. Simulation results on both synthetic and real-world data demonstrate the superior performance of the proposed LRMF and LRTF algorithms over the state-of-the-art algorithms in terms of accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
天天快乐应助zx采纳,获得10
4秒前
陌回完成签到,获得积分10
4秒前
cavalry发布了新的文献求助10
4秒前
4秒前
lsl完成签到,获得积分20
6秒前
吴昕昕完成签到,获得积分10
6秒前
sam完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
10秒前
lsl发布了新的文献求助10
11秒前
科研通AI2S应助asdfqwer采纳,获得10
12秒前
艾宁发布了新的文献求助10
14秒前
斯文败类应助爱笑向彤采纳,获得20
14秒前
孟欣玥发布了新的文献求助10
15秒前
lucaslucas完成签到,获得积分10
15秒前
华123应助科研通管家采纳,获得10
15秒前
Rondab应助科研通管家采纳,获得10
15秒前
Rondab应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
我是老大应助科研通管家采纳,获得10
16秒前
Ricey应助科研通管家采纳,获得10
16秒前
彭于晏应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
善学以致用应助yqzhang采纳,获得10
16秒前
xiang完成签到 ,获得积分0
18秒前
18秒前
赘婿应助诚c采纳,获得10
19秒前
19秒前
20秒前
goo完成签到,获得积分20
20秒前
追忆发布了新的文献求助10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959179
求助须知:如何正确求助?哪些是违规求助? 3505472
关于积分的说明 11124101
捐赠科研通 3237190
什么是DOI,文献DOI怎么找? 1789003
邀请新用户注册赠送积分活动 871507
科研通“疑难数据库(出版商)”最低求助积分说明 802824