Updating the national soil map of Nepal through digital soil mapping

土壤测量 土壤科学 克里金 土壤功能 土工试验 地质统计学 地理信息系统 土壤质量 地理 土壤分类 水文学(农业) 土地利用 土壤类型 土壤系列
作者
Sushil Lamichhane,Lalit Kumar,Kabindra Adhikari
出处
期刊:Geoderma [Elsevier]
卷期号:394: 115041-115041 被引量:21
标识
DOI:10.1016/j.geoderma.2021.115041
摘要

While most legacy soil maps are available at coarse spatial detail with composite mapping units, high resolution and detailed soil maps are desired for various land resource applications. In time and resource constrained circumstances, the application of disaggregation methods and modelling approaches that capitalise on existing, less detailed soil maps is an important alternative method for a more rapid generation of soil maps at finer resolutions. A legacy soil map of 1:1,000,000 scale for Nepal was disaggregated using “Disaggregation and Harmonisation of Soil Map units through Resampled Classification Trees” (DSMART) tool with the C5.0 classification tree algorithm and an area proportional virtual sampling technique. Environmental covariates sourced from remote sensing, digital elevation model, climatic databases, and national databases were used for predictive mapping of soils. The predicted map was found to show more detailed soil information in comparison to the original soil map. Accuracy assessment with independent datasets showed that the overall accuracy of prediction was 40.4% (51.2% on 3x3 window) while considering the level of Reference Soil Groups only, and 22.1% (32.6% on 3x3 window) for the soil groups with 1st principal qualifier. Geology was the most important covariate, followed by the minimum temperature of the coldest month, elevation, valley depth and land cover. Amidst the scarcity of spatially explicit detailed soil information, this disaggregated soil map can be a useful resource as a more detailed version of the legacy soil map of Nepal for individuals concerned with research, planning and management of land resources. Environmental covariates used in this study may be useful when disaggregating soil maps in similar environmental settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡英宇发布了新的文献求助10
刚刚
1秒前
2秒前
科研通AI2S应助圆润润呐采纳,获得10
3秒前
3秒前
慕青应助健壮的尔烟采纳,获得10
3秒前
火星上的摩托完成签到 ,获得积分10
3秒前
容荣发布了新的文献求助10
4秒前
思源应助小杨爱学习采纳,获得10
4秒前
6秒前
优秀灵竹发布了新的文献求助30
7秒前
7秒前
7秒前
8秒前
9秒前
慕青应助容荣采纳,获得10
9秒前
runtang完成签到,获得积分10
12秒前
lily完成签到,获得积分10
13秒前
隐形曼青应助云宇采纳,获得10
13秒前
大模型应助小武wwwww采纳,获得10
14秒前
15秒前
Colin完成签到 ,获得积分20
16秒前
llls完成签到 ,获得积分10
18秒前
zzz发布了新的文献求助20
20秒前
老实的栾完成签到,获得积分10
21秒前
21秒前
21秒前
小鱼儿完成签到,获得积分10
22秒前
玩家完成签到,获得积分20
26秒前
27秒前
孟梦发布了新的文献求助30
28秒前
abbsdan发布了新的文献求助10
28秒前
活泼新儿完成签到 ,获得积分10
30秒前
云上人发布了新的文献求助10
32秒前
王博士完成签到 ,获得积分10
33秒前
852应助冰水混合物煮香菇采纳,获得10
36秒前
英俊的铭应助李白采纳,获得10
37秒前
38秒前
liyang999发布了新的文献求助10
38秒前
章鱼博士完成签到,获得积分20
39秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136744
求助须知:如何正确求助?哪些是违规求助? 2787779
关于积分的说明 7783154
捐赠科研通 2443843
什么是DOI,文献DOI怎么找? 1299466
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954