生物传热
纳米颗粒
热疗
材料科学
磁性纳米粒子
居里温度
磁热疗
传热
血流
热疗
热疗
癌症治疗
生物医学工程
纳米技术
癌症
铁磁性
机械
放射科
医学
物理
凝聚态物理
内科学
作者
Kassianne Tofani,Saeed Tiari
出处
期刊:Journal of engineering and science in medical diagnostics and therapy
[ASME International]
日期:2021-05-31
被引量:2
摘要
Abstract Magnetic nanoparticle hyperthermia (MNH) is a localized cancer treatment which uses an alternating magnetic field to excite magnetic nanoparticles (MNPs) injected into a tumor, causing them to generate heat. Once the temperature of the tumor tissue reaches about 43°C, the cancerous cells die. Different types of MNPs have been studied, including iron oxides with various coatings, Cu-Ni alloys and complex manganese/zinc particles. This paper reviews different types of MNPs and assesses them by magnetization, SAR, and Curie Temperature. We reviewed the achievements and limitations of the works in this field. A major issue with MNH is maintaining effective hyperthermia while preserving healthy tissue. Numerical modeling can predict temperature distribution and safely simulate hyperthermia. The most used bioheat transfer equation is Pennes' equation which includes a term for blood perfusion, an important factor for temperature distribution. While some models safely neglect it, most include blood perfusion term. Some recent models have also included large blood vessels, others used their own heat transfer models. This article reviews the different models and classifies them based on how they address blood flow. A need for studies with realistic tumor shapes was identified. The irregular shape of most tumors could result in less uniform temperature distribution than in the commonly used circular or spherical models. This article aims to identify potential future work to create more realistic tumor models.
科研通智能强力驱动
Strongly Powered by AbleSci AI