清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A knowledge‐based self‐pre‐diagnosis system to predict Covid‐19 in smartphone users using personal data and observed symptoms

考试(生物学) 专家系统 2019年冠状病毒病(COVID-19) 计算机科学 政府(语言学) 集合(抽象数据类型) 医疗保健 远程医疗 肺炎 医疗急救 医学 人工智能 病理 疾病 哲学 古生物学 内科学 经济 生物 程序设计语言 传染病(医学专业) 经济增长 语言学
作者
Duygu Çelik Ertuğrul,Demet Ulusoy
出处
期刊:Expert Systems [Wiley]
卷期号:39 (3) 被引量:13
标识
DOI:10.1111/exsy.12716
摘要

Covid-19 is an acute respiratory infection and presents various clinical features ranging from no symptoms to severe pneumonia and death. Medical expert systems, especially in diagnosis and monitoring stages, can give positive consequences in the struggle against Covid-19. In this study, a rule-based expert system is designed as a predictive tool in self-pre-diagnosis of Covid-19. The potential users are smartphone users, healthcare experts and government health authorities. The system does not only share the data gathered from the users with experts, but also analyzes the symptom data as a diagnostic assistant to predict possible Covid-19 risk. To do this, a user needs to fill out a patient examination card that conducts an online Covid-19 diagnostic test, to receive an unconfirmed online test prediction result and a set of precautionary and supportive action suggestions. The system was tested for 169 positive cases. The results produced by the system were compared with the real PCR test results for the same cases. For patients with certain symptomatic findings, there was no significant difference found between the results of the system and the confirmed test results with PCR test. Furthermore, a set of suitable suggestions produced by the system were compared with the written suggestions of a collaborated health expert. The suggestions deduced and the written suggestions of the health expert were similar and the system suggestions in line with suggestions of the expert. The system can be suitable for diagnosing and monitoring of positive cases in the areas other than clinics and hospitals during the Covid-19 pandemic. The results of the case studies are promising, and it demonstrates the applicability, effectiveness, and efficiency of the proposed approach in all communities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hiram完成签到,获得积分10
7秒前
合不着完成签到 ,获得积分10
8秒前
vbnn完成签到 ,获得积分10
58秒前
帅气的沧海完成签到 ,获得积分10
1分钟前
古炮完成签到 ,获得积分10
1分钟前
2分钟前
sunny完成签到,获得积分20
2分钟前
金平卢仙发布了新的文献求助10
2分钟前
theo完成签到 ,获得积分10
2分钟前
3分钟前
Jemma31发布了新的文献求助10
3分钟前
3分钟前
cvvvv发布了新的文献求助10
4分钟前
cvvvv完成签到,获得积分10
5分钟前
中中中完成签到 ,获得积分10
5分钟前
imi完成签到 ,获得积分10
6分钟前
善良元芹完成签到 ,获得积分10
6分钟前
Bond完成签到 ,获得积分10
7分钟前
波里舞完成签到 ,获得积分10
7分钟前
诚心的信封完成签到 ,获得积分10
7分钟前
morena应助顺顺采纳,获得10
8分钟前
沙海沉戈完成签到,获得积分0
8分钟前
Jemma31完成签到,获得积分10
8分钟前
有人应助科研通管家采纳,获得20
8分钟前
vinh完成签到,获得积分10
8分钟前
liu95完成签到 ,获得积分10
10分钟前
10分钟前
11分钟前
大熊完成签到 ,获得积分10
12分钟前
三跳完成签到 ,获得积分10
12分钟前
WZM完成签到 ,获得积分10
13分钟前
bwx完成签到,获得积分10
13分钟前
joe完成签到 ,获得积分0
13分钟前
14分钟前
有人应助科研通管家采纳,获得10
14分钟前
有人应助科研通管家采纳,获得10
14分钟前
有人应助科研通管家采纳,获得10
14分钟前
15分钟前
15分钟前
phz发布了新的文献求助20
15分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146771
求助须知:如何正确求助?哪些是违规求助? 2798063
关于积分的说明 7826678
捐赠科研通 2454607
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527