Vehicle Detection From UAV Imagery With Deep Learning: A Review

深度学习 计算机科学 人工智能 卷积神经网络 任务(项目管理) 机器学习 推论 光学(聚焦) 一般化 多任务学习 工程类 数学 光学 物理 数学分析 系统工程
作者
Abdelmalek Bouguettaya,Hafed Zarzour,Ahmed Kechida,Amine Mohammed Taberkit
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (11): 6047-6067 被引量:116
标识
DOI:10.1109/tnnls.2021.3080276
摘要

Vehicle detection from unmanned aerial vehicle (UAV) imagery is one of the most important tasks in a large number of computer vision-based applications. This crucial task needed to be done with high accuracy and speed. However, it is a very challenging task due to many characteristics related to the aerial images and the used hardware, such as different vehicle sizes, orientations, types, density, limited datasets, and inference speed. In recent years, many classical and deep-learning-based methods have been proposed in the literature to address these problems. Handed engineering- and shallow learning-based techniques suffer from poor accuracy and generalization to other complex cases. Deep-learning-based vehicle detection algorithms achieved better results due to their powerful learning ability. In this article, we provide a review on vehicle detection from UAV imagery using deep learning techniques. We start by presenting the different types of deep learning architectures, such as convolutional neural networks, recurrent neural networks, autoencoders, generative adversarial networks, and their contribution to improve the vehicle detection task. Then, we focus on investigating the different vehicle detection methods, datasets, and the encountered challenges all along with the suggested solutions. Finally, we summarize and compare the techniques used to improve vehicle detection from UAV-based images, which could be a useful aid to researchers and developers to select the most adequate method for their needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助大胆铃铛采纳,获得10
1秒前
长情笑柳应助珈蓝采纳,获得10
1秒前
彩色芷发布了新的文献求助10
2秒前
高高很厉害应助聂难敌采纳,获得50
2秒前
浮游应助老实凝竹采纳,获得10
3秒前
Zx_1993应助Ann采纳,获得20
3秒前
3秒前
4秒前
ice完成签到,获得积分10
4秒前
ldx完成签到,获得积分10
5秒前
和谐的敏发布了新的文献求助10
6秒前
碧蓝绮山应助Aicy1111111采纳,获得10
6秒前
星辰大海应助12345采纳,获得10
7秒前
江上挽风吟墨染完成签到,获得积分10
7秒前
王一正完成签到,获得积分10
10秒前
11秒前
王小雨完成签到 ,获得积分10
11秒前
huangyikun完成签到,获得积分10
11秒前
12秒前
14秒前
14秒前
和谐的敏完成签到,获得积分10
15秒前
15秒前
赵梦妍发布了新的文献求助10
16秒前
善学以致用应助低空飞行采纳,获得10
16秒前
zzzxiangyi完成签到,获得积分10
17秒前
LiYanqin完成签到,获得积分10
17秒前
俏皮的听云完成签到,获得积分10
17秒前
NLNL完成签到,获得积分20
17秒前
xt完成签到,获得积分10
18秒前
18秒前
勇敢的心发布了新的文献求助10
18秒前
18秒前
18秒前
shasha完成签到,获得积分10
18秒前
魅域苍穹发布了新的文献求助10
18秒前
linjiaxin发布了新的文献求助10
18秒前
赵祎完成签到,获得积分10
20秒前
经小夏发布了新的文献求助10
21秒前
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930