Vehicle Detection From UAV Imagery With Deep Learning: A Review

深度学习 计算机科学 人工智能 卷积神经网络 任务(项目管理) 机器学习 推论 光学(聚焦) 一般化 多任务学习 工程类 数学 光学 物理 数学分析 系统工程
作者
Abdelmalek Bouguettaya,Hafed Zarzour,Ahmed Kechida,Amine Mohammed Taberkit
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (11): 6047-6067 被引量:45
标识
DOI:10.1109/tnnls.2021.3080276
摘要

Vehicle detection from unmanned aerial vehicle (UAV) imagery is one of the most important tasks in a large number of computer vision-based applications. This crucial task needed to be done with high accuracy and speed. However, it is a very challenging task due to many characteristics related to the aerial images and the used hardware, such as different vehicle sizes, orientations, types, density, limited datasets, and inference speed. In recent years, many classical and deep-learning-based methods have been proposed in the literature to address these problems. Handed engineering- and shallow learning-based techniques suffer from poor accuracy and generalization to other complex cases. Deep-learning-based vehicle detection algorithms achieved better results due to their powerful learning ability. In this article, we provide a review on vehicle detection from UAV imagery using deep learning techniques. We start by presenting the different types of deep learning architectures, such as convolutional neural networks, recurrent neural networks, autoencoders, generative adversarial networks, and their contribution to improve the vehicle detection task. Then, we focus on investigating the different vehicle detection methods, datasets, and the encountered challenges all along with the suggested solutions. Finally, we summarize and compare the techniques used to improve vehicle detection from UAV-based images, which could be a useful aid to researchers and developers to select the most adequate method for their needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王淳完成签到 ,获得积分10
刚刚
刚刚
情怀应助雪花君采纳,获得10
1秒前
1秒前
1秒前
酷炫煎饼完成签到,获得积分10
1秒前
1秒前
fanqinge完成签到,获得积分20
2秒前
领导范儿应助左丘傲菡采纳,获得10
3秒前
LC发布了新的文献求助10
3秒前
3秒前
赘婿应助Kane采纳,获得10
3秒前
3秒前
LZL发布了新的文献求助10
4秒前
4秒前
匆匆完成签到,获得积分10
4秒前
今后应助柯同采纳,获得10
5秒前
胡萝卜完成签到,获得积分10
5秒前
L_完成签到,获得积分10
5秒前
5秒前
CipherSage应助炙热晓露采纳,获得10
5秒前
5秒前
zzz发布了新的文献求助10
6秒前
就喝一口果汁完成签到,获得积分10
6秒前
时尚的哈密瓜完成签到,获得积分10
6秒前
alan完成签到 ,获得积分10
6秒前
周亭完成签到,获得积分10
7秒前
衬衫完成签到 ,获得积分10
7秒前
情怀应助任娜采纳,获得10
7秒前
8秒前
赘婿应助IAMXC采纳,获得10
8秒前
活ni的pig完成签到 ,获得积分10
8秒前
8秒前
我是老大应助xingxing采纳,获得10
8秒前
8秒前
8秒前
胡萝卜发布了新的文献求助10
8秒前
风的季节发布了新的文献求助10
9秒前
新八完成签到,获得积分10
10秒前
10秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143246
求助须知:如何正确求助?哪些是违规求助? 2794391
关于积分的说明 7811052
捐赠科研通 2450640
什么是DOI,文献DOI怎么找? 1303909
科研通“疑难数据库(出版商)”最低求助积分说明 627144
版权声明 601386