Vehicle Detection From UAV Imagery With Deep Learning: A Review

深度学习 计算机科学 人工智能 卷积神经网络 任务(项目管理) 机器学习 推论 光学(聚焦) 一般化 多任务学习 工程类 数学分析 物理 数学 系统工程 光学
作者
Abdelmalek Bouguettaya,Hafed Zarzour,Ahmed Kechida,Amine Mohammed Taberkit
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (11): 6047-6067 被引量:116
标识
DOI:10.1109/tnnls.2021.3080276
摘要

Vehicle detection from unmanned aerial vehicle (UAV) imagery is one of the most important tasks in a large number of computer vision-based applications. This crucial task needed to be done with high accuracy and speed. However, it is a very challenging task due to many characteristics related to the aerial images and the used hardware, such as different vehicle sizes, orientations, types, density, limited datasets, and inference speed. In recent years, many classical and deep-learning-based methods have been proposed in the literature to address these problems. Handed engineering- and shallow learning-based techniques suffer from poor accuracy and generalization to other complex cases. Deep-learning-based vehicle detection algorithms achieved better results due to their powerful learning ability. In this article, we provide a review on vehicle detection from UAV imagery using deep learning techniques. We start by presenting the different types of deep learning architectures, such as convolutional neural networks, recurrent neural networks, autoencoders, generative adversarial networks, and their contribution to improve the vehicle detection task. Then, we focus on investigating the different vehicle detection methods, datasets, and the encountered challenges all along with the suggested solutions. Finally, we summarize and compare the techniques used to improve vehicle detection from UAV-based images, which could be a useful aid to researchers and developers to select the most adequate method for their needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mine_cherry应助wtl采纳,获得10
刚刚
框框发布了新的文献求助10
刚刚
Irena发布了新的文献求助10
刚刚
1秒前
东winter完成签到,获得积分10
1秒前
1秒前
yu关闭了yu文献求助
2秒前
2秒前
lunlun发布了新的文献求助30
3秒前
leinuo077完成签到,获得积分10
3秒前
清脆映真完成签到,获得积分10
3秒前
biu完成签到,获得积分10
4秒前
风乘万里发布了新的文献求助50
4秒前
蓝茶完成签到,获得积分10
4秒前
Dotson完成签到,获得积分10
4秒前
小梁发布了新的文献求助10
5秒前
YC完成签到,获得积分10
5秒前
hyper3than完成签到,获得积分10
5秒前
5秒前
科研通AI6应助李小莉0419采纳,获得10
5秒前
6秒前
6秒前
思想家发布了新的文献求助10
6秒前
rh发布了新的文献求助10
6秒前
江川完成签到,获得积分10
7秒前
田様应助灵灵妖采纳,获得10
7秒前
8秒前
邢大志完成签到,获得积分20
8秒前
想要发文章完成签到,获得积分10
8秒前
Lchemistry完成签到,获得积分10
9秒前
9秒前
唯博完成签到 ,获得积分10
10秒前
李爱国应助luraaaa采纳,获得10
10秒前
xrt完成签到,获得积分10
10秒前
蓝茶发布了新的文献求助20
10秒前
11秒前
11秒前
凶狠的翅膀完成签到,获得积分10
11秒前
holland完成签到 ,获得积分10
11秒前
研友_VZG7GZ应助孙浩洋采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836