Vehicle Detection From UAV Imagery With Deep Learning: A Review

深度学习 计算机科学 人工智能 卷积神经网络 任务(项目管理) 机器学习 推论 光学(聚焦) 一般化 多任务学习 工程类 数学分析 物理 数学 系统工程 光学
作者
Abdelmalek Bouguettaya,Hafed Zarzour,Ahmed Kechida,Amine Mohammed Taberkit
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (11): 6047-6067 被引量:116
标识
DOI:10.1109/tnnls.2021.3080276
摘要

Vehicle detection from unmanned aerial vehicle (UAV) imagery is one of the most important tasks in a large number of computer vision-based applications. This crucial task needed to be done with high accuracy and speed. However, it is a very challenging task due to many characteristics related to the aerial images and the used hardware, such as different vehicle sizes, orientations, types, density, limited datasets, and inference speed. In recent years, many classical and deep-learning-based methods have been proposed in the literature to address these problems. Handed engineering- and shallow learning-based techniques suffer from poor accuracy and generalization to other complex cases. Deep-learning-based vehicle detection algorithms achieved better results due to their powerful learning ability. In this article, we provide a review on vehicle detection from UAV imagery using deep learning techniques. We start by presenting the different types of deep learning architectures, such as convolutional neural networks, recurrent neural networks, autoencoders, generative adversarial networks, and their contribution to improve the vehicle detection task. Then, we focus on investigating the different vehicle detection methods, datasets, and the encountered challenges all along with the suggested solutions. Finally, we summarize and compare the techniques used to improve vehicle detection from UAV-based images, which could be a useful aid to researchers and developers to select the most adequate method for their needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
卡他发布了新的文献求助10
2秒前
雨乐发布了新的文献求助10
4秒前
suntee发布了新的文献求助10
4秒前
6秒前
33333完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
KKKK发布了新的文献求助10
7秒前
8秒前
木易木土完成签到,获得积分10
9秒前
9秒前
天天快乐应助Fan采纳,获得10
9秒前
yu关闭了yu文献求助
10秒前
Jasper应助ychen采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
14秒前
14秒前
浮游应助科研通管家采纳,获得10
14秒前
十月完成签到,获得积分10
14秒前
能干巨人应助科研通管家采纳,获得10
14秒前
aaa完成签到,获得积分10
14秒前
李健应助科研通管家采纳,获得10
14秒前
14秒前
pluto应助科研通管家采纳,获得10
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
15秒前
15秒前
浮游应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
一剑温柔发布了新的文献求助10
16秒前
17秒前
大模型应助li17195采纳,获得10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711738
求助须知:如何正确求助?哪些是违规求助? 5205626
关于积分的说明 15265191
捐赠科研通 4863974
什么是DOI,文献DOI怎么找? 2611057
邀请新用户注册赠送积分活动 1561379
关于科研通互助平台的介绍 1518704