已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

On evaluating deep learning-based optical flow methods for gas velocity estimation with optical gas imaging cameras

人工智能 计算机科学 温室气体 噪音(视频) 光流 深度学习 像素 计算机视觉 图像(数学) 地质学 海洋学
作者
Johannes Rangel,Camilo Dueñas,Robert Schmoll,Andreas Kroll
标识
DOI:10.1117/12.2591903
摘要

Besides its importance for greenhouse emission reduction, the remote detection, localization and quantification of gas leaks in industrial facilities remains a challenging problem in industry and research. In that sense, the development of new data processing techniques that allow deriving new and/or more accurate information about the gas leaks from made measurements has gained more attention in the recent years. This becomes apparent from the increased use of optical gas imaging (OGI) cameras (specialised mid-wave infrared cameras e.g. for methane and carbon dioxide) along with image processing and computer vision techniques, to tackle these challenges. In this work, deep-learning-based optical flow methods are evaluated for determining gas velocities from gas images of an OGI camera. For this, a dataset of simulated and real gas images under controlled and real conditions is used for supervised training and validation of two different state of the art CNNs for optical flow computation: FlowNetC, FlowNet2 and PWC-Net. Classical optical flow methods based on variational methods are also considered and the differences in performance and accuracy between classical and deep-learning-based methods are shown. In addition, FlowNet2 is further improved for working with gas images by fine tuning the network weights. This approach has demonstrated to make FlowNet2 more reliable and less sensitive to image noise and jitter in the experiments. For further validation, a set of real gas images acquired in a wind channel and one from a biogas plant with reference mean gas velocities from a 3D anemometer are being used. The results show that the fine-tuned version of FlowNet2 (FNet2-G) allow computing larger optical flow magnitudes than classical optical flow methods while being less sensitive to image noise under field conditions. The obtained results also show the potential of deep-learning-based approaches for image processing tasks such as gas segmentation, disparity computation and scene flow in stereo gas images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
加油发布了新的文献求助10
1秒前
搜集达人应助Wdw2236采纳,获得10
1秒前
时光发布了新的文献求助10
1秒前
泷云完成签到,获得积分10
3秒前
3秒前
5秒前
5秒前
5秒前
DDDDai完成签到 ,获得积分10
5秒前
6秒前
elio0113发布了新的文献求助10
6秒前
善学以致用应助xxdn采纳,获得10
7秒前
nusiew发布了新的文献求助10
8秒前
8秒前
隐形曼青应助呆萌的奎采纳,获得10
8秒前
AN应助小明采纳,获得10
9秒前
10秒前
彭于晏应助haha采纳,获得10
10秒前
10秒前
bingki发布了新的文献求助10
10秒前
舒适的淇完成签到,获得积分10
10秒前
11秒前
许许完成签到,获得积分10
12秒前
林筱辰发布了新的文献求助10
12秒前
12秒前
13秒前
皮代谷发布了新的文献求助10
13秒前
传奇3应助积极的老鼠采纳,获得10
14秒前
高高的书本完成签到 ,获得积分10
14秒前
科研通AI6.1应助hhj采纳,获得10
15秒前
如意皮带完成签到 ,获得积分10
15秒前
范佳宁发布了新的文献求助10
16秒前
1825822526完成签到,获得积分10
18秒前
小葵完成签到 ,获得积分10
19秒前
19秒前
顺利函完成签到,获得积分10
20秒前
李健的小迷弟应助堇瓜采纳,获得10
20秒前
Lucas应助不会朗日的拉格采纳,获得10
20秒前
汐白完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879