亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

On evaluating deep learning-based optical flow methods for gas velocity estimation with optical gas imaging cameras

人工智能 计算机科学 温室气体 噪音(视频) 光流 深度学习 像素 计算机视觉 图像(数学) 地质学 海洋学
作者
Johannes Rangel,Camilo Dueñas,Robert Schmoll,Andreas Kroll
标识
DOI:10.1117/12.2591903
摘要

Besides its importance for greenhouse emission reduction, the remote detection, localization and quantification of gas leaks in industrial facilities remains a challenging problem in industry and research. In that sense, the development of new data processing techniques that allow deriving new and/or more accurate information about the gas leaks from made measurements has gained more attention in the recent years. This becomes apparent from the increased use of optical gas imaging (OGI) cameras (specialised mid-wave infrared cameras e.g. for methane and carbon dioxide) along with image processing and computer vision techniques, to tackle these challenges. In this work, deep-learning-based optical flow methods are evaluated for determining gas velocities from gas images of an OGI camera. For this, a dataset of simulated and real gas images under controlled and real conditions is used for supervised training and validation of two different state of the art CNNs for optical flow computation: FlowNetC, FlowNet2 and PWC-Net. Classical optical flow methods based on variational methods are also considered and the differences in performance and accuracy between classical and deep-learning-based methods are shown. In addition, FlowNet2 is further improved for working with gas images by fine tuning the network weights. This approach has demonstrated to make FlowNet2 more reliable and less sensitive to image noise and jitter in the experiments. For further validation, a set of real gas images acquired in a wind channel and one from a biogas plant with reference mean gas velocities from a 3D anemometer are being used. The results show that the fine-tuned version of FlowNet2 (FNet2-G) allow computing larger optical flow magnitudes than classical optical flow methods while being less sensitive to image noise under field conditions. The obtained results also show the potential of deep-learning-based approaches for image processing tasks such as gas segmentation, disparity computation and scene flow in stereo gas images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xjcy应助科研那些年采纳,获得10
4秒前
承序完成签到,获得积分10
10秒前
两个我完成签到 ,获得积分10
10秒前
wanci应助爱听歌凤灵采纳,获得10
15秒前
20秒前
羽心完成签到,获得积分10
22秒前
NexusExplorer应助羽心采纳,获得10
27秒前
犹豫的踏歌完成签到,获得积分10
39秒前
41秒前
ZLL发布了新的文献求助10
48秒前
51秒前
53秒前
李健应助jinmuna采纳,获得10
54秒前
1004完成签到,获得积分10
56秒前
一次过发布了新的文献求助10
57秒前
高兴电脑应助baiyixuan采纳,获得20
1分钟前
ming应助科研那些年采纳,获得10
1分钟前
chen完成签到 ,获得积分10
1分钟前
1分钟前
欧阳蛋蛋鸡完成签到 ,获得积分10
1分钟前
1分钟前
SciGPT应助111采纳,获得10
1分钟前
一次过完成签到,获得积分20
1分钟前
tuanheqi应助snah采纳,获得150
1分钟前
Billy应助mmyhn采纳,获得30
1分钟前
11发布了新的文献求助30
1分钟前
1分钟前
111发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
111完成签到,获得积分10
1分钟前
ming应助科研那些年采纳,获得10
1分钟前
Diamond完成签到 ,获得积分10
1分钟前
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
风中的沛文完成签到,获得积分10
2分钟前
嗯哼应助baiyixuan采纳,获得20
2分钟前
哭泣仙人掌完成签到,获得积分10
2分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294412
求助须知:如何正确求助?哪些是违规求助? 2930341
关于积分的说明 8445933
捐赠科研通 2602598
什么是DOI,文献DOI怎么找? 1420666
科研通“疑难数据库(出版商)”最低求助积分说明 660559
邀请新用户注册赠送积分活动 643423