On evaluating deep learning-based optical flow methods for gas velocity estimation with optical gas imaging cameras

人工智能 计算机科学 温室气体 噪音(视频) 光流 深度学习 像素 计算机视觉 图像(数学) 地质学 海洋学
作者
Johannes Rangel,Camilo Dueñas,Robert Schmoll,Andreas Kroll
标识
DOI:10.1117/12.2591903
摘要

Besides its importance for greenhouse emission reduction, the remote detection, localization and quantification of gas leaks in industrial facilities remains a challenging problem in industry and research. In that sense, the development of new data processing techniques that allow deriving new and/or more accurate information about the gas leaks from made measurements has gained more attention in the recent years. This becomes apparent from the increased use of optical gas imaging (OGI) cameras (specialised mid-wave infrared cameras e.g. for methane and carbon dioxide) along with image processing and computer vision techniques, to tackle these challenges. In this work, deep-learning-based optical flow methods are evaluated for determining gas velocities from gas images of an OGI camera. For this, a dataset of simulated and real gas images under controlled and real conditions is used for supervised training and validation of two different state of the art CNNs for optical flow computation: FlowNetC, FlowNet2 and PWC-Net. Classical optical flow methods based on variational methods are also considered and the differences in performance and accuracy between classical and deep-learning-based methods are shown. In addition, FlowNet2 is further improved for working with gas images by fine tuning the network weights. This approach has demonstrated to make FlowNet2 more reliable and less sensitive to image noise and jitter in the experiments. For further validation, a set of real gas images acquired in a wind channel and one from a biogas plant with reference mean gas velocities from a 3D anemometer are being used. The results show that the fine-tuned version of FlowNet2 (FNet2-G) allow computing larger optical flow magnitudes than classical optical flow methods while being less sensitive to image noise under field conditions. The obtained results also show the potential of deep-learning-based approaches for image processing tasks such as gas segmentation, disparity computation and scene flow in stereo gas images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
双予完成签到,获得积分20
刚刚
刚刚
1秒前
HAHAH发布了新的文献求助10
1秒前
2秒前
sophiea发布了新的文献求助10
2秒前
3秒前
wgm完成签到,获得积分10
3秒前
望山云雾发布了新的文献求助10
3秒前
林飞云发布了新的文献求助10
3秒前
aaa发布了新的文献求助10
3秒前
所所应助琉璃采纳,获得10
3秒前
3秒前
Hello应助Liu采纳,获得10
4秒前
zcx完成签到,获得积分20
4秒前
奥丁不言语完成签到 ,获得积分10
4秒前
风趣翠霜完成签到,获得积分10
4秒前
周一完成签到 ,获得积分10
4秒前
天天开心完成签到 ,获得积分10
5秒前
5秒前
Ehgnix发布了新的文献求助10
5秒前
大椒完成签到 ,获得积分10
5秒前
鲨鱼辣椒完成签到,获得积分10
5秒前
冷静的傲易完成签到,获得积分10
6秒前
6秒前
茶茶发布了新的文献求助10
6秒前
About发布了新的文献求助10
6秒前
ludan完成签到,获得积分20
6秒前
奶黄包应助简化为采纳,获得20
6秒前
安妮发布了新的文献求助10
7秒前
8秒前
大观天下发布了新的文献求助10
8秒前
9秒前
今后应助海豚有海采纳,获得10
9秒前
10秒前
chengqin完成签到 ,获得积分10
12秒前
小蚊子发布了新的文献求助20
12秒前
浅笑完成签到,获得积分10
12秒前
Master_Ye发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950593
求助须知:如何正确求助?哪些是违规求助? 3495971
关于积分的说明 11080135
捐赠科研通 3226361
什么是DOI,文献DOI怎么找? 1783812
邀请新用户注册赠送积分活动 867916
科研通“疑难数据库(出版商)”最低求助积分说明 800977