亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sample-level Data Selection for Federated Learning

计算机科学 范畴变量 机器学习 样品(材料) 选择(遗传算法) 任务(项目管理) 人工智能 过程(计算) 能见度 趋同(经济学) 数据挖掘 构造(python库) 质量(理念) GSM演进的增强数据速率 数据建模 数据库 经济 色谱法 程序设计语言 经济增长 管理 化学 操作系统 哲学 物理 光学 认识论
作者
Anran Li,Lan Zhang,Juntao Tan,Yaxuan Qin,Junhao Wang,Xiang‐Yang Li
标识
DOI:10.1109/infocom42981.2021.9488723
摘要

Federated learning (FL) enables participants to collaboratively construct a global machine learning model without sharing their local training data to the remote server. In FL systems, the selection of training samples has a significant impact on model performances, e.g., selecting participants whose datasets have erroneous samples, skewed categorical distributions, and low content diversity would result in low accuracy and unstable models. In this work, we aim to solve the exigent optimization problem that selects a collection of high-quality training samples for a given FL task under a monetary budget in a privacy-preserving way, which is extremely challenging without visibility to participants' local data and training process. We provide a systematic analysis of important data related factors affecting the model performance and propose a holistic design to privately and efficiently select high-quality data samples considering all these factors. We verify the merits of our proposed solution with extensive experiments on a real AIoT system with 50 clients, including 20 edge computers, 20 laptops, and 10 desktops. The experimental results validates that our solution achieves accurate and efficient selection of high-quality data samples, and consequently an FL model with a faster convergence speed and higher accuracy than that achieved by existing solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助科研通管家采纳,获得10
15秒前
wooyh完成签到,获得积分10
23秒前
1分钟前
1分钟前
1分钟前
1分钟前
Orange应助冷艳的小懒虫采纳,获得10
1分钟前
wanci应助冷艳的小懒虫采纳,获得10
1分钟前
时尚的尔白完成签到,获得积分20
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Johnny完成签到,获得积分10
1分钟前
Johnny发布了新的文献求助10
1分钟前
柠檬发布了新的文献求助10
1分钟前
1分钟前
1分钟前
月儿完成签到 ,获得积分10
1分钟前
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
2分钟前
小大夫完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
柠檬完成签到,获得积分10
3分钟前
lcdt完成签到,获得积分10
3分钟前
3分钟前
熬夜波比应助郭楠楠采纳,获得10
4分钟前
思源应助George采纳,获得10
5分钟前
天天快乐应助现实的乐天采纳,获得10
5分钟前
李爱国应助v哈哈采纳,获得10
5分钟前
酷酷海豚完成签到,获得积分10
5分钟前
6分钟前
v哈哈发布了新的文献求助10
6分钟前
lemon完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
赘婿应助lemon采纳,获得10
6分钟前
Swear完成签到 ,获得积分10
6分钟前
绾妤完成签到 ,获得积分0
6分钟前
wangfaqing942完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4861758
关于积分的说明 15107715
捐赠科研通 4823032
什么是DOI,文献DOI怎么找? 2581870
邀请新用户注册赠送积分活动 1536034
关于科研通互助平台的介绍 1494399