A new optimization method based on COOT bird natural life model

计算机科学 群体行为 算法 元启发式 数学优化 最优化问题 人工智能 数学
作者
Iraj Naruei,Farshid Keynia
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:183: 115352-115352 被引量:286
标识
DOI:10.1016/j.eswa.2021.115352
摘要

Recently, many intelligent algorithms have been proposed to find the best solution for complex engineering problems. These algorithms can search volatile and multi-dimensional solution spaces and find optimal answers timely. In this paper, a new meta-heuristic method is proposed that inspires the behavior of the swarm of birds called Coot. The Coot algorithm imitates two different modes of movement of birds on the water surface: in the first phase, the movement of birds is irregular, and in the second phase, the movements are regular. The swarm moves towards a group of leading leaders to reach a food supply; the movement of the end of the swarm is in the form of a chain of coots, each of coot which moves behind its front coots. The algorithm then runs on a number of test functions, and the results are compared with well-known optimization algorithms. In addition, to solve several real problems, such as Tension/Compression spring, Pressure vessel design, Welded Beam Design, Multi-plate disc clutch brake, Step-cone pulley problem, Cantilever beam design, reducer design problem, and Rolling element bearing problem this algorithm is used to confirm the applicability of this algorithm. The results show that this algorithm is capable to outperform most of the other optimization methods. The source code is currently available for public from: https://www.mathworks.com/matlabcentral/fileexchange/89102-coot-optimization-algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyyyy关注了科研通微信公众号
刚刚
ao完成签到,获得积分10
1秒前
1秒前
Qiao完成签到,获得积分10
2秒前
英姑应助eyu采纳,获得10
2秒前
odanfeonq完成签到,获得积分10
2秒前
舒适忆枫完成签到,获得积分10
3秒前
4秒前
5秒前
hao123发布了新的文献求助10
5秒前
lei完成签到,获得积分10
5秒前
田様应助erdongsir采纳,获得10
5秒前
科研通AI2S应助zero采纳,获得10
5秒前
SciGPT应助糟糕的半鬼采纳,获得10
6秒前
7秒前
7秒前
CipherSage应助pastor采纳,获得10
7秒前
8秒前
yellow123完成签到 ,获得积分10
8秒前
8秒前
赛博小穗发布了新的文献求助10
8秒前
陌殇发布了新的文献求助10
9秒前
11234发布了新的文献求助10
10秒前
g_f发布了新的文献求助10
11秒前
sss发布了新的文献求助10
11秒前
11秒前
科研通AI2S应助Elijah采纳,获得30
11秒前
初一完成签到 ,获得积分10
11秒前
张小兔啊完成签到,获得积分10
12秒前
13秒前
风中梦山完成签到,获得积分10
13秒前
13秒前
13秒前
Yiwaa完成签到,获得积分10
14秒前
巫马荧完成签到,获得积分10
14秒前
14秒前
无限的怜阳完成签到,获得积分10
15秒前
HCLonely应助星河梦枕采纳,获得10
15秒前
15秒前
无奈发布了新的文献求助20
15秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217353
求助须知:如何正确求助?哪些是违规求助? 2866617
关于积分的说明 8152518
捐赠科研通 2533308
什么是DOI,文献DOI怎么找? 1366190
科研通“疑难数据库(出版商)”最低求助积分说明 644710
邀请新用户注册赠送积分活动 617698