A Liquid Biopsy Assay for Noninvasive Identification of Lymph Node Metastases in T1 Colorectal Cancer

医学 内科学 肿瘤科 结直肠癌 队列 列线图 优势比 液体活检 癌症 病理 胃肠病学
作者
Yuma Wada,Mitsuo Shimada,Tatsuro Murano,Hiroyuki Takamaru,Yuji Morine,Tetsuya Ikemoto,Yu Saito,Francesc Balaguer,Luís Bujanda,María Pellisé,Ken Kato,Yutaka Saito,Hiroaki Ikematsu,Ajay Goel
出处
期刊:Gastroenterology [Elsevier]
卷期号:161 (1): 151-162.e1 被引量:40
标识
DOI:10.1053/j.gastro.2021.03.062
摘要

Background & Aims

We recently reported use of tissue-based transcriptomic biomarkers (microRNA [miRNA] or messenger RNA [mRNA]) for identification of lymph node metastasis (LNM) in patients with invasive submucosal colorectal cancers (T1 CRC). In this study, we translated our tissue-based biomarkers into a blood-based liquid biopsy assay for noninvasive detection of LNM in patients with high-risk T1 CRC.

Methods

We analyzed 330 specimens from patients with high-risk T1 CRC, which included 188 serum samples from 2 clinical cohorts—a training cohort (N = 46) and a validation cohort (N = 142)—and matched formalin-fixed paraffin-embedded samples (N = 142). We performed quantitative reverse-transcription polymerase chain reaction, followed by logistic regression analysis, to develop an integrated transcriptomic panel and establish a risk-stratification model combined with clinical risk factors.

Results

We used comprehensive expression profiling of a training cohort of LNM-positive and LMN-negative serum specimens to identify an optimized transcriptomic panel of 4 miRNAs (miR-181b, miR-193b, miR-195, and miR-411) and 5 mRNAs (AMT, forkhead box A1 [FOXA1], polymeric immunoglobulin receptor [PIGR], matrix metalloproteinase 1 [MMP1], and matrix metalloproteinase 9 [MMP9]), which robustly identified patients with LNM (area under the curve [AUC], 0.86; 95% confidence interval [CI], 0.72–0.94). We validated panel performance in an independent validation cohort (AUC, 0.82; 95% CI, 0.74–0.88). Our risk-stratification model was more accurate than the panel and an independent predictor for identification of LNM (AUC, 0.90; univariate: odds ratio [OR], 37.17; 95% CI, 4.48–308.35; P < .001; multivariate: OR, 17.28; 95% CI, 1.82–164.07; P = .013). The model limited potential overtreatment to only 18% of all patients, which is dramatically superior to pathologic features that are currently used (92%).

Conclusions

A novel risk-stratification model for noninvasive identification of T1 CRC has the potential to avoid unnecessary operations for patients classified as high-risk by conventional risk-classification criteria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助甜甜千兰采纳,获得10
1秒前
轩辕源智完成签到,获得积分10
1秒前
jonghuang发布了新的文献求助10
2秒前
慧慧发布了新的文献求助10
2秒前
2秒前
田様应助喜悦酸奶采纳,获得10
2秒前
喜悦宛凝完成签到 ,获得积分10
3秒前
4秒前
山山而川完成签到,获得积分10
5秒前
呀ya发布了新的文献求助10
5秒前
Dprisk发布了新的文献求助10
5秒前
6秒前
Jasper应助星星采纳,获得10
6秒前
沈业桥发布了新的文献求助10
6秒前
情怀应助Alpha不吃小蛋糕采纳,获得10
7秒前
刘刘刘发布了新的文献求助10
7秒前
7秒前
小杨完成签到,获得积分10
8秒前
9秒前
clairr完成签到,获得积分10
9秒前
10秒前
11秒前
12秒前
单纯砖头完成签到,获得积分10
12秒前
13秒前
两袖清风关注了科研通微信公众号
13秒前
14秒前
15秒前
思源应助陈文学采纳,获得10
15秒前
16秒前
星星发布了新的文献求助10
16秒前
DLL完成签到 ,获得积分10
17秒前
18秒前
xj发布了新的文献求助10
18秒前
ttt发布了新的文献求助10
19秒前
苏枭臣完成签到,获得积分10
19秒前
安迪宝刚完成签到,获得积分10
19秒前
沈严青发布了新的文献求助10
19秒前
20秒前
YangSY发布了新的文献求助200
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312864
求助须知:如何正确求助?哪些是违规求助? 2945309
关于积分的说明 8524240
捐赠科研通 2621078
什么是DOI,文献DOI怎么找? 1433284
科研通“疑难数据库(出版商)”最低求助积分说明 664932
邀请新用户注册赠送积分活动 650302