MDA-CF: Predicting MiRNA-Disease associations based on a cascade forest model by fusing multi-source information

自编码 随机森林 计算机科学 小RNA 计算生物学 疾病 人工智能 源代码 机器学习 数据挖掘 医学 生物 人工神经网络 病理 遗传学 基因 操作系统
作者
Qiuying Dai,Yanyi Chu,Zhiqi Li,Yusong Zhao,Xueying Mao,Yanjing Wang,Yi Xiong,Dong-Qing Wei
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:136: 104706-104706 被引量:11
标识
DOI:10.1016/j.compbiomed.2021.104706
摘要

MicroRNAs (miRNAs) are significant regulators in various biological processes. They may become promising biomarkers or therapeutic targets, which provide a new perspective in diagnosis and treatment of multiple diseases. Since the experimental methods are always costly and resource-consuming, prediction of disease-related miRNAs using computational methods is in great need. In this study, we developed MDA-CF to identify underlying miRNA-disease associations based on a cascade forest model. In this method, multi-source information was integrated to represent miRNAs and diseases comprehensively, and the autoencoder was utilized for dimension reduction to obtain the optimal feature space. The cascade forest model was then employed for miRNA-disease association prediction. As a result, the average AUC of MDA-CF was 0.9464 on HMDD v3.2 in five-fold cross-validation. Compared with previous computational methods, MDA-CF performed better on HMDD v2.0 with an average AUC of 0.9258. Moreover, MDA-CF was implemented to investigate colon neoplasm, breast neoplasm, and gastric neoplasm, and 100%, 86%, 88% of the top 50 potential miRNAs were validated by authoritative databases. In conclusion, MDA-CF appears to be a reliable method to uncover disease-associated miRNAs. The source code of MDA-CF is available at https://github.com/a1622108/MDA-CF . • MDA-CF is developed for miRNA-disease association prediction using cascade forest. • Multiple source of information is combined to represent miRNAs and diseases. • The autoencoder is utilized to obtain representative feature space. • MDA-CF combines the bagging method random forest and the boosting method xgboost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助龙歪歪采纳,获得10
刚刚
1秒前
1秒前
xxxqqq完成签到,获得积分10
2秒前
虚拟的觅山完成签到,获得积分10
3秒前
slj完成签到,获得积分10
4秒前
科研爱好者完成签到 ,获得积分10
4秒前
5秒前
ywang发布了新的文献求助10
6秒前
koial完成签到 ,获得积分10
7秒前
苏卿应助小xy采纳,获得10
7秒前
侦察兵发布了新的文献求助10
9秒前
10秒前
yyyy发布了新的文献求助50
10秒前
皇帝的床帘完成签到,获得积分10
11秒前
GXY完成签到,获得积分10
13秒前
xiuwen发布了新的文献求助10
13秒前
啦啦啦完成签到,获得积分10
13秒前
Umwandlung完成签到,获得积分10
15秒前
gorgeousgaga完成签到,获得积分10
15秒前
16秒前
16秒前
科研通AI5应助ipeakkka采纳,获得10
17秒前
852应助章家炜采纳,获得10
18秒前
Gauss应助张小汉采纳,获得30
20秒前
嘻嘻发布了新的文献求助10
20秒前
杰哥完成签到 ,获得积分10
21秒前
Ava应助赵小可可可可采纳,获得10
21秒前
科研通AI5应助kento采纳,获得30
22秒前
nkmenghan发布了新的文献求助10
23秒前
26秒前
redondo10完成签到,获得积分0
27秒前
28秒前
乔qiao发布了新的文献求助30
31秒前
WZ0904发布了新的文献求助10
32秒前
poegtam完成签到,获得积分10
33秒前
大胆盼兰发布了新的文献求助10
34秒前
wuyan204完成签到 ,获得积分10
35秒前
windcreator完成签到,获得积分10
35秒前
redondo5完成签到,获得积分0
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849