MDA-CF: Predicting MiRNA-Disease associations based on a cascade forest model by fusing multi-source information

自编码 随机森林 计算机科学 小RNA 计算生物学 疾病 人工智能 源代码 机器学习 数据挖掘 医学 生物 人工神经网络 病理 遗传学 基因 操作系统
作者
Qiuying Dai,Yanyi Chu,Zhiqi Li,Yusong Zhao,Xueying Mao,Yanjing Wang,Yi Xiong,Dong-Qing Wei
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:136: 104706-104706 被引量:11
标识
DOI:10.1016/j.compbiomed.2021.104706
摘要

MicroRNAs (miRNAs) are significant regulators in various biological processes. They may become promising biomarkers or therapeutic targets, which provide a new perspective in diagnosis and treatment of multiple diseases. Since the experimental methods are always costly and resource-consuming, prediction of disease-related miRNAs using computational methods is in great need. In this study, we developed MDA-CF to identify underlying miRNA-disease associations based on a cascade forest model. In this method, multi-source information was integrated to represent miRNAs and diseases comprehensively, and the autoencoder was utilized for dimension reduction to obtain the optimal feature space. The cascade forest model was then employed for miRNA-disease association prediction. As a result, the average AUC of MDA-CF was 0.9464 on HMDD v3.2 in five-fold cross-validation. Compared with previous computational methods, MDA-CF performed better on HMDD v2.0 with an average AUC of 0.9258. Moreover, MDA-CF was implemented to investigate colon neoplasm, breast neoplasm, and gastric neoplasm, and 100%, 86%, 88% of the top 50 potential miRNAs were validated by authoritative databases. In conclusion, MDA-CF appears to be a reliable method to uncover disease-associated miRNAs. The source code of MDA-CF is available at https://github.com/a1622108/MDA-CF . • MDA-CF is developed for miRNA-disease association prediction using cascade forest. • Multiple source of information is combined to represent miRNAs and diseases. • The autoencoder is utilized to obtain representative feature space. • MDA-CF combines the bagging method random forest and the boosting method xgboost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三石完成签到,获得积分10
刚刚
大模型应助安好采纳,获得10
1秒前
2秒前
星辰完成签到 ,获得积分10
2秒前
王青青发布了新的文献求助10
3秒前
一顿吃不饱完成签到,获得积分0
3秒前
可靠的书本完成签到,获得积分10
4秒前
鲨鱼也蛀牙完成签到,获得积分10
5秒前
ricown完成签到,获得积分10
5秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
6秒前
chiazy完成签到,获得积分10
7秒前
7秒前
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
xzy998应助科研通管家采纳,获得10
9秒前
Akjan应助科研通管家采纳,获得10
9秒前
小王同学完成签到,获得积分10
9秒前
小花完成签到 ,获得积分10
10秒前
文心同学完成签到,获得积分0
11秒前
12秒前
缥缈若翠完成签到,获得积分10
13秒前
安好发布了新的文献求助10
14秒前
淡淡阁完成签到 ,获得积分10
15秒前
萌萌雨完成签到,获得积分10
16秒前
17秒前
陈老太完成签到 ,获得积分10
19秒前
小斌完成签到,获得积分10
20秒前
O_O完成签到,获得积分10
22秒前
Liang完成签到,获得积分10
25秒前
lii完成签到,获得积分10
26秒前
一杯沧海完成签到 ,获得积分10
26秒前
桢桢树完成签到,获得积分10
27秒前
cheng完成签到,获得积分10
29秒前
29秒前
迅速凝竹完成签到 ,获得积分10
31秒前
31秒前
leapper完成签到 ,获得积分10
32秒前
赵怼怼完成签到,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015670
求助须知:如何正确求助?哪些是违规求助? 3555644
关于积分的说明 11318192
捐赠科研通 3288842
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015