MDA-CF: Predicting MiRNA-Disease associations based on a cascade forest model by fusing multi-source information

自编码 随机森林 计算机科学 小RNA 计算生物学 疾病 人工智能 源代码 机器学习 数据挖掘 医学 生物 人工神经网络 病理 遗传学 基因 操作系统
作者
Qiuying Dai,Yanyi Chu,Zhiqi Li,Yusong Zhao,Xueying Mao,Yanjing Wang,Yi Xiong,Dong-Qing Wei
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:136: 104706-104706 被引量:11
标识
DOI:10.1016/j.compbiomed.2021.104706
摘要

MicroRNAs (miRNAs) are significant regulators in various biological processes. They may become promising biomarkers or therapeutic targets, which provide a new perspective in diagnosis and treatment of multiple diseases. Since the experimental methods are always costly and resource-consuming, prediction of disease-related miRNAs using computational methods is in great need. In this study, we developed MDA-CF to identify underlying miRNA-disease associations based on a cascade forest model. In this method, multi-source information was integrated to represent miRNAs and diseases comprehensively, and the autoencoder was utilized for dimension reduction to obtain the optimal feature space. The cascade forest model was then employed for miRNA-disease association prediction. As a result, the average AUC of MDA-CF was 0.9464 on HMDD v3.2 in five-fold cross-validation. Compared with previous computational methods, MDA-CF performed better on HMDD v2.0 with an average AUC of 0.9258. Moreover, MDA-CF was implemented to investigate colon neoplasm, breast neoplasm, and gastric neoplasm, and 100%, 86%, 88% of the top 50 potential miRNAs were validated by authoritative databases. In conclusion, MDA-CF appears to be a reliable method to uncover disease-associated miRNAs. The source code of MDA-CF is available at https://github.com/a1622108/MDA-CF . • MDA-CF is developed for miRNA-disease association prediction using cascade forest. • Multiple source of information is combined to represent miRNAs and diseases. • The autoencoder is utilized to obtain representative feature space. • MDA-CF combines the bagging method random forest and the boosting method xgboost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
善良书蕾完成签到,获得积分10
3秒前
4秒前
4秒前
程住气完成签到 ,获得积分10
5秒前
小华完成签到 ,获得积分10
6秒前
啊哈哈哈哈哈完成签到 ,获得积分10
7秒前
七月星河完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
开朗初晴完成签到,获得积分10
11秒前
科研通AI2S应助稚生w采纳,获得10
12秒前
12秒前
刘雪完成签到 ,获得积分10
13秒前
viogriffin完成签到,获得积分0
14秒前
15秒前
15秒前
SASI完成签到 ,获得积分10
17秒前
刘哔完成签到,获得积分10
17秒前
TH完成签到 ,获得积分10
18秒前
18秒前
不想读书完成签到,获得积分10
18秒前
18秒前
18秒前
无字诉题完成签到 ,获得积分10
19秒前
19秒前
长岛冰茶完成签到,获得积分10
21秒前
呱呱完成签到 ,获得积分10
22秒前
小王完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
我不是哪吒完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
Ds发布了新的文献求助10
23秒前
9182完成签到,获得积分10
24秒前
meng完成签到,获得积分10
24秒前
谢谢谢谢谢谢谢谢完成签到 ,获得积分10
24秒前
大江流完成签到,获得积分10
26秒前
酷炫的飞阳完成签到,获得积分10
26秒前
羊羊羊完成签到 ,获得积分10
27秒前
11完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664825
求助须知:如何正确求助?哪些是违规求助? 4870916
关于积分的说明 15108980
捐赠科研通 4823643
什么是DOI,文献DOI怎么找? 2582450
邀请新用户注册赠送积分活动 1536469
关于科研通互助平台的介绍 1495006