MDA-CF: Predicting MiRNA-Disease associations based on a cascade forest model by fusing multi-source information

自编码 随机森林 计算机科学 小RNA 计算生物学 疾病 人工智能 源代码 机器学习 数据挖掘 医学 生物 人工神经网络 病理 遗传学 基因 操作系统
作者
Qiuying Dai,Yanyi Chu,Zhiqi Li,Yusong Zhao,Xueying Mao,Yanjing Wang,Yi Xiong,Dong-Qing Wei
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:136: 104706-104706 被引量:11
标识
DOI:10.1016/j.compbiomed.2021.104706
摘要

MicroRNAs (miRNAs) are significant regulators in various biological processes. They may become promising biomarkers or therapeutic targets, which provide a new perspective in diagnosis and treatment of multiple diseases. Since the experimental methods are always costly and resource-consuming, prediction of disease-related miRNAs using computational methods is in great need. In this study, we developed MDA-CF to identify underlying miRNA-disease associations based on a cascade forest model. In this method, multi-source information was integrated to represent miRNAs and diseases comprehensively, and the autoencoder was utilized for dimension reduction to obtain the optimal feature space. The cascade forest model was then employed for miRNA-disease association prediction. As a result, the average AUC of MDA-CF was 0.9464 on HMDD v3.2 in five-fold cross-validation. Compared with previous computational methods, MDA-CF performed better on HMDD v2.0 with an average AUC of 0.9258. Moreover, MDA-CF was implemented to investigate colon neoplasm, breast neoplasm, and gastric neoplasm, and 100%, 86%, 88% of the top 50 potential miRNAs were validated by authoritative databases. In conclusion, MDA-CF appears to be a reliable method to uncover disease-associated miRNAs. The source code of MDA-CF is available at https://github.com/a1622108/MDA-CF . • MDA-CF is developed for miRNA-disease association prediction using cascade forest. • Multiple source of information is combined to represent miRNAs and diseases. • The autoencoder is utilized to obtain representative feature space. • MDA-CF combines the bagging method random forest and the boosting method xgboost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xq完成签到,获得积分10
1秒前
ding应助王锦鹏采纳,获得10
1秒前
封夏岚完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
积极小土豆发布了新的文献求助150
3秒前
TaoBijiang发布了新的文献求助10
4秒前
李海翔发布了新的文献求助10
4秒前
Lucas应助Gavin采纳,获得10
4秒前
ppttyy完成签到 ,获得积分10
5秒前
zhangq应助肖旻采纳,获得10
5秒前
一口南瓜饼完成签到,获得积分10
5秒前
yoyolulu完成签到,获得积分10
5秒前
万能图书馆应助wenhui采纳,获得10
5秒前
gln完成签到 ,获得积分10
5秒前
AW完成签到,获得积分10
6秒前
王静姝完成签到,获得积分10
6秒前
王w发布了新的文献求助10
6秒前
壮观梦之完成签到,获得积分10
7秒前
7秒前
7秒前
拉不不发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
QJL完成签到,获得积分10
8秒前
nannan完成签到 ,获得积分10
8秒前
8秒前
赵保钢完成签到,获得积分10
8秒前
A29964095完成签到 ,获得积分10
8秒前
ZH完成签到 ,获得积分10
8秒前
9秒前
留猪完成签到,获得积分10
9秒前
Owen应助蓝莓采纳,获得10
10秒前
lily发布了新的文献求助10
11秒前
ikun0000完成签到,获得积分10
11秒前
11秒前
12秒前
yulou2199完成签到,获得积分10
12秒前
belssingoo发布了新的文献求助30
12秒前
zcz发布了新的文献求助10
12秒前
doudou完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773617
求助须知:如何正确求助?哪些是违规求助? 5612760
关于积分的说明 15431930
捐赠科研通 4906024
什么是DOI,文献DOI怎么找? 2640036
邀请新用户注册赠送积分活动 1587869
关于科研通互助平台的介绍 1542957