MDA-CF: Predicting MiRNA-Disease associations based on a cascade forest model by fusing multi-source information

自编码 随机森林 计算机科学 小RNA 计算生物学 疾病 人工智能 源代码 机器学习 数据挖掘 医学 生物 人工神经网络 病理 遗传学 基因 操作系统
作者
Qiuying Dai,Yanyi Chu,Zhiqi Li,Yusong Zhao,Xueying Mao,Yanjing Wang,Yi Xiong,Dong-Qing Wei
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:136: 104706-104706 被引量:11
标识
DOI:10.1016/j.compbiomed.2021.104706
摘要

MicroRNAs (miRNAs) are significant regulators in various biological processes. They may become promising biomarkers or therapeutic targets, which provide a new perspective in diagnosis and treatment of multiple diseases. Since the experimental methods are always costly and resource-consuming, prediction of disease-related miRNAs using computational methods is in great need. In this study, we developed MDA-CF to identify underlying miRNA-disease associations based on a cascade forest model. In this method, multi-source information was integrated to represent miRNAs and diseases comprehensively, and the autoencoder was utilized for dimension reduction to obtain the optimal feature space. The cascade forest model was then employed for miRNA-disease association prediction. As a result, the average AUC of MDA-CF was 0.9464 on HMDD v3.2 in five-fold cross-validation. Compared with previous computational methods, MDA-CF performed better on HMDD v2.0 with an average AUC of 0.9258. Moreover, MDA-CF was implemented to investigate colon neoplasm, breast neoplasm, and gastric neoplasm, and 100%, 86%, 88% of the top 50 potential miRNAs were validated by authoritative databases. In conclusion, MDA-CF appears to be a reliable method to uncover disease-associated miRNAs. The source code of MDA-CF is available at https://github.com/a1622108/MDA-CF . • MDA-CF is developed for miRNA-disease association prediction using cascade forest. • Multiple source of information is combined to represent miRNAs and diseases. • The autoencoder is utilized to obtain representative feature space. • MDA-CF combines the bagging method random forest and the boosting method xgboost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mhy发布了新的文献求助10
1秒前
QQ发布了新的文献求助10
1秒前
ccc发布了新的文献求助10
2秒前
Franny完成签到 ,获得积分10
2秒前
啦啦啦完成签到 ,获得积分10
2秒前
amai完成签到,获得积分10
2秒前
3秒前
htscn发布了新的文献求助10
4秒前
4秒前
Eliauk发布了新的文献求助10
4秒前
叮叮当应助自信的嚓茶采纳,获得20
4秒前
yrt发布了新的文献求助10
4秒前
鱼咬羊发布了新的文献求助10
5秒前
5秒前
追寻羿发布了新的文献求助10
6秒前
6秒前
恰同学少年完成签到,获得积分10
6秒前
小二郎应助宁萌不酸采纳,获得10
7秒前
7秒前
祖优秀完成签到,获得积分20
7秒前
研友_VZG7GZ应助呆呆江采纳,获得10
7秒前
彭于晏应助年轻的熊猫采纳,获得10
9秒前
光亮蜗牛发布了新的文献求助10
9秒前
10秒前
咎牛青完成签到,获得积分10
10秒前
10秒前
聪明月饼发布了新的文献求助10
10秒前
11秒前
1580071102发布了新的文献求助10
12秒前
上官若男应助yrt采纳,获得10
12秒前
13秒前
yitata完成签到,获得积分10
13秒前
顾矜应助Mewo采纳,获得10
13秒前
amongferns完成签到,获得积分10
13秒前
July发布了新的文献求助30
13秒前
如初发布了新的文献求助10
14秒前
宁萌不酸完成签到,获得积分20
14秒前
rosalieshi应助俊秀的冷风采纳,获得30
14秒前
14秒前
光亮雨双发布了新的文献求助10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309308
求助须知:如何正确求助?哪些是违规求助? 2942666
关于积分的说明 8510202
捐赠科研通 2617790
什么是DOI,文献DOI怎么找? 1430403
科研通“疑难数据库(出版商)”最低求助积分说明 664123
邀请新用户注册赠送积分活动 649286