Robust Control Optimization Based on Actuator Fault and Sensor Fault Compensation for Mini Motion Package Electro-Hydraulic Actuator

控制理论(社会学) 执行机构 李雅普诺夫函数 断层(地质) 补偿(心理学) 工程类 故障检测与隔离 控制工程 观察员(物理) 泄漏(经济) 计算机科学 非线性系统 控制(管理) 宏观经济学 地震学 经济 人工智能 精神分析 地质学 物理 电气工程 量子力学 心理学
作者
Tan Van Nguyen,Huy Q. Tran,Khoa Dang Nguyen
出处
期刊:Electronics [MDPI AG]
卷期号:10 (22): 2774-2774
标识
DOI:10.3390/electronics10222774
摘要

In recent years, electro-hydraulic systems have been widely used in many industries and have attracted research attention because of their outstanding characteristics such as power, accuracy, efficiency, and ease of maintenance. However, such systems face serious problems caused simultaneously by disturbances, internal leakage fault, sensor fault, and dynamic uncertain equation components, which make the system unstable and unsafe. Therefore, in this paper, we focus on the estimation of system fault and uncertainties with the aid of advanced fault compensation techniques. First, we design a sliding mode observer using the Lyapunov algorithm to estimate actuator faults that produce not only internal leakage fault but also disturbances or unknown input uncertainties. These faults occur under the effect of payload variations and unknown friction nonlinearities. Second, Lyapunov analysis-based unknown input observer model is designed to estimate sensor faults arising from sensor noises and faults. Third, to minimize the estimated faults, a combination of actuator and sensor compensation fault is proposed, in which the compensation process is performed due to the difference between the output signal and its estimation. Finally, the numerical simulations are performed to demonstrate the effectiveness of the proposed method obtained under various faulty scenarios. The simulation results show that the efficiency of the proposed solution is better than the traditional PID controller and the sensor fault compensation method, despite the influence of noises.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
睡睡完成签到,获得积分10
刚刚
1秒前
2秒前
所所应助饕餮采纳,获得10
2秒前
平淡小凝发布了新的文献求助10
2秒前
nihaoxiaoai完成签到,获得积分10
3秒前
完美世界应助英俊的汉堡采纳,获得10
3秒前
爱静静应助hehe采纳,获得10
4秒前
九城发布了新的文献求助20
4秒前
斯文败类应助高君奇采纳,获得10
4秒前
小二郎应助特兰克斯采纳,获得10
4秒前
mojomars发布了新的文献求助10
4秒前
吃嘛嘛香完成签到,获得积分10
4秒前
wqy发布了新的文献求助10
5秒前
天天快乐应助新的心跳采纳,获得10
5秒前
Orange应助有益采纳,获得10
5秒前
7秒前
爆米花应助marinemiao采纳,获得10
7秒前
7秒前
招财不肥发布了新的文献求助10
8秒前
网安真难T_T完成签到,获得积分10
8秒前
大土豆子完成签到,获得积分10
9秒前
9秒前
甜甜醉波发布了新的文献求助10
10秒前
CodeCraft应助jy采纳,获得10
10秒前
领导范儿应助睡睡采纳,获得10
10秒前
哈哈完成签到 ,获得积分10
11秒前
Holleay123发布了新的文献求助10
12秒前
12秒前
13秒前
苏卿应助kento采纳,获得100
13秒前
小马甲应助满意之玉采纳,获得10
13秒前
14秒前
Jing完成签到,获得积分10
15秒前
饕餮发布了新的文献求助10
15秒前
16秒前
16秒前
wqy完成签到,获得积分10
16秒前
犹豫的戎完成签到,获得积分20
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808